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20. ABSTRACT (Continued)

methodology is to use the logic of the computer to take a scalar continuous out-
put signal, sample it at relatively high rate, and then sort out the various
samples into a vector ofpseudo measurements.K The potential of such a scheme
is significant, since it offers, among other things, the possibility of using
fewer sensors and the notential for providing gracefully degrading system per-
foimance in the face of sensor failure.

The pseudo measurement concept may be likened to the observer concept of
linear system theory, An "observer" is a dynamic subsystem which processes the
available measurements and control :nputs to obtain asymptotic estimates of
those states which are not measured. The distinction between the observer and
pseudo measurement concept is as folirws. Additional pseudo states required for
proper control act5.on are obtained via design of a multi-rate or multiple-order
sampling sequence in the pseudo meas•tement approach, while the estimate of
system states not measured is attained by design of a dynamic subsystem in the
observer approach. The pseudo measui:ement concept is based on using information
contained in a scalar measurement, samipled at a high rate, to generate a lower
rate measurement vector. This vector is likened to pseudo states since it
effectively provides distinctively 6;fferent information in the form of separate
Ssmpling sequences shifted in time.

''The report is organized in threc volumes. Volume I contains the theoretical
developments as well as illustrative examples and case studies. The basic tools
needed to assess the pseudo measurc'•ent concept are reviewed and extended. The
concept of the freo,,enny renponst of the continuous variables of singic-rato
digitally controlled system is tac:ti, given sufficient generality to treat multi-
rate systems (including the pseudo measurement concept). A YF-16 case study is
used to compare pseudo measurement gains against conventional YF-16 analog con-
troller gains. The pseudo mearurement gains are found to be comparable with the
conventional gains, indicating tii. approach does not require control authority
more excessive than an analcg cent roller design.'A

As a "byproduct,' an !'s; ortaxht relationship isNdeduced which made it feaaihlj
to apply the switch dezompe:oitx.cn/frequency response technique to the error
analysis of simulations of continuous systems and/or discretely controlled con-
tinuous systems. An illustrative example demonstrates the significant spectral
differences between a closed-loop system (employing an analog or digital con-
Liuller) and an all-digital simulation of the closed-loop system. The example
also treats problems encountered when simulation software is implemented on two
different computers, each working in a slightly different frame time (the so-
called independent processor problem). This provides a tool which can be profit-
ably applied to the "error" analysis of simulations; perhaps to predict expected
differences between actual flight test and man-in-the-loop moving-base simula-
tions.

Volume II describes two algorithms useful in the analysis of multi-rate
systems, while Volume III gives FORTRAN listings for these algorithms. The
first. algorithm converts a continuous transfer function in the s-domain into
alternate descriptions in the z-, w-, and w'--domains. The second algorithm
calculates a low data rate discrete transform given a high data rate discrete
transfer function. This algorithm is presented in Section IV of Volume I and
later derived in Section IV of Volume II.

t Unclassified
SECUPITY CL[A 1SSI I CAIIO OF TIllS PAGEIWhe. 'Osl Ere'ed)



FOREWOID

The research described in this report was performed by Systems
Technology, Inc., Hawthorne, California, under Air Force Contract
F33615-79-C-3601. The Task Number N3, Mathematics of Flight Control,
was under Project Number 2304, Mathematics. This work was directed by
the Control Dynamics Branch, Flight Control Division, Flight Dynamics
Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Sys-
terns Command, Wright-Paterson Air Force Base, Ohio. The work was admin-
istered by Captain Dennis G. 3. Didaieusky.

Richard F. Whitbeck was the Systems Technology, Inc., Project Engi-
neer under the direction of Duane McRuer.

The authors wish to express their appreciation to the Systems Tech-
nology publication staff for their efforts in preparing this three-
volume report.

The authors also wish to express their thanks to Ms. Susan Riedel
at Systems Technology, Inc., and to Captain Stanley Larimer and
Dr. Robert Schwanz at the Flight Dynamics Laboratory for their appre-
ciable effrt•s in reviewing the technical report.

This report is organized in three volumes. Volume I contains the
theoretical developments as well as illustrative examples and case
studies. Volume II describes two algorithms useful in the analysis
of multi-rate systems, the DISCRET and TX CONV computer programs.
Volume III contains the FORTRAN listings for these computer programs.

'This report covers work performed from January 1979 through May
1980. The report was submitted by the authors in August 1980.

•I 

~ DTIC !,flm

[y 

-

A-. 

,

t'i1, IOl

_ Avani I •I/o
1 .

o 1!
iii-t .~ _

S. ... ....... .... ":V- ..• .,.•• •......

L_________



TABLE OF CONTENTS

Page

I. INTRODUCTION ..................................................... I

II. VECTOR SWITCH DECOMPOSITION: CONSTRUCTION OF

THE PSEUDO MEASUREMENT VECTOR .................................. 4

A. Introduction ............................................... 4

B. Review of the Multi-Rate Transform Domain ............... 5
C. Vector Switch Decomposition and

Multi-Rate Sampling ........ o ............................ 10

D. Multiple-Order Sampling .................................... 13

E. Non-Synchronous Sampling................................. 15

F. The Pseudo Measurement Concept ....... , .................. 17

G. An Illustrative Example .................................... 21

H. Some Properties of the Pseudo
Measurement Concept ..................................... 31

III. FREQUENCY RESPONSE OF SINGLE-RATE SYSTEMS ................... 34

A. Introduction .................................. I ......... 34

B. Continuous System Frequency Response ...................... 35

C. Mathematical Preliminaries ................................. 36

D. Open-Loop Frequency Response: Continuous
Output Sampled ...... . ............. ....................... 38

E. Open-Loop Frequency Response: Continuous Output ........ 44

F. Sitngle-Rate Closed-Loop Frequency Response .............. 47

G. Section Summary ............................................ 51

IV. FREQUENCY RESPONSE OF MULTI-RATE SYSTEMS ...................... 54

A. Introduction ................................................ 54

B. A Basic Result .............................................. 54

C. A Closed-Loop Application .................................. 64

D. General Results .......................................... 76

E. Application to Simulation Error Analysis ................ 81

F. An Important Algorithm ................................. 94

G. Computation of (W GW)T, GT/N Given..................... 97

H. Section Summary ............................................ 102

V



Page

V. A PSEUDO MEASUREMENT EXERCISE ................................ 103

A. Analog Controlle-r- YF-16 l ......................... ..... 103

B. Frequency Response ....................................... 106

C. A Comment on a Simulation Artifact ...................... 107

D. The Pseudo Measurement Design ............................ 108

E. Section Summary ........................................... 112

VI. SUMMARY AND CONCLUSIONS ...................................... 114

REFERENCES ......................................................... 116

APPENDIX A. FREQUENCY RESPONSE OF FAST-INPUT/SLOW-OUTPUT
CLOSED-LOOP SYSTEM USING MULTI-RATE THEORY .......... A-I

APPENDIX B. COMPUTATION OF (WM 2 W2 )T AND (W2 ,M 3 W3 )T ............. B-i

APPENDIX C. NUMERICAL DETAILS FOR AN ILLUSTRATIVE EXAMPLE ....... C-I

APPENDIX D. LISTING OF TRANSFER FUNCTIONS ....................... D-1

vi



LIST OF FIGURES

1. Multi-Rate System ........................................... 5

2. Closed-Loop Multi-Rate System ................................. 9

3. Decomposition of a Sample Sequence ........................... 11

4. Multiple-Order Sampling ........................................ 13

5. Components of Decomposed Signal .............................. 15

6. A Set of Non-Synchronously Sampled Signals .................... 16

7. Sampling Notation ............................................... 16

8. Advance, Sample, Delay ......................................... 17

9. Pseudo Measuremeut Block Diagram .............................. 18

10. Reformulated Block Diagram ........................ , .......... 19
Ii. 1, XT/3 . .. r VA

1. , , ld the Compuieucs of .QT/3 ............ 2 .1

12. A Single-Rate Controller, T = 1.0 sec ........................ 22

13. A Multiple-Order Sampling Controller, T - 1.0 sec ............ 24

14. Continuous System ............................................ 35

15. Open-Loop System ................................................ 39

16. Magnitude Plot for N 1 1, 2, 4 ............................... 41

17. Frequency Response and Spectral Components of Output ......... 46

18. '"Steady-State" Time Response ................................. 47

19. Illustrative Vector Closed-Loop Configuration ................ 48

20. Magnitude Plot for Closed-Loop System ........................ 52

21. Multi-Rate/Multiple-Order Open-Loop System ................... 55

22. Open-Loop System with Switch Decomposition ............... 55

23. Closed--Loop System with Switch Decomposition ................... 64

vii



24. Closed-Lcop Numerical Example .............................. 65

25. Composite Magnitude Plot ...................................... 71

26. Magnitude Plot No. 1 ........................................... 73

27. Magnitude Plot No. 2............................. 73

28. A Simulation Case Study ....................................... 82

29. Case IV, Switch Decomposition Model ......................... 85

30. Magnitude Plot; Case I, Case II .............................. 88

31. Magnitude Plot; Case I, Case III ............................ 89

32. Comparison; Case II and Case Ill ............................ 90

33. Magnitude Plot; Case I, Case IV .............................. 91

34. Comparison, Case II and Case IV ............................. 92

35. Comparison, All Cases .......................................... 93
¾i

36. A Phantom Sampler Formulation of a
T/N, T/M Sampling Format ...................................... 94

37. Response of a T/2 Input Sampled,
T/3 Output Sampled System ................................... 96

38. Example Two-Rate Open--Loop System ............................ 97

39. Switch Decomposition Formulation for Fig. 38 ................ 97

40. Analog YF-16 Controller ...................................... 104

41. Emulated YF-16 Controller .................................... 104

42. Bode Plot, Analog Compared with Emulated Controller ......... 106

43. Simulation of Actuator via Tustin Transform ................. 107

44. Alternate Configuration ...................................... 108

45. A Pseudo Differentiation Configuration ........................ 110

46. Bode Plot, Pseudo Differentiation Configuration ............. 113

viii



Page

A-I. Fast-Input/Slow-Output Closed-Loop System ................... A-i

A-2. Phantom Si ler Concept ...................................... A-3

C-i. Switch Decomposition of T/2, T/3 Example .................... C-2

I.,

LIST OF TABLES

Page

1. Some Representative Data Holds ............................... 8

2. Numerator Coefficients as a Function of

Advance Parameter A ............................................ 29

3. Feedback Gains .................................................. 29

4. Data for Composite Magnitude Plot (FIgurp 25) ................ 72

IN ix

----------------------------------------4' m.Of.
4
~~it--



SECTION I

INTRODUCTION

Many current digital design procedures attempt only to approach the

characteristics of existing analog designs. No explicit methodology

exists which can exploit the unique characteristics of multi-rate or

multiple-order digital computation and filtering. The objective of this

research effort is to develop a multi-rate/multiple-order theory for the

design of closed-loop digital control systems with characteristics and

attributes that are either difficult or impossible to attain with analog

or single-rate controllers. The key idea in this methodology is to use

the logic of the computer to take a scalar continuous output signal,

sample it at a relatively high rate, and then sort out the various sam-

ples into a vector of "pseudo measuremelts." The potential of such a

scheme is significant, since it offers, among other things, the possi-

bility of ustag fewer sensors and the potentiul for providing grocefully

degrading system performance in the face of sensor failure.

The pseudo measurement concept may be likened to the observer con-

cept of linear system theory. Recall that an "observer" is a dynamic

subsystem which processes the available measurements and control inputs

to obtain asymptotic estimates of those states which are not measured.

The distinction between the observer and pseudo measurement concept is

as follows. Additional pseudo states required for proper control action

are obtained via design of a multi-rate or multiple-order sampling se-

quence in the pseudo measurement approach, while the estimate of system

states not measured is attained by design of a dynamic subsystem in the

observer approach. The pseudo measurement concept is based on using

information contained in a scalar measurement, sampled at a high rate,

to generate a lower rate measurement vector. This vector is likened to

pseudo states since it effectively provides distinctively different

information in the form of separate sampling sequences shifted in time.

However, it should be noted that the pseudo measuiement co., tpt is not a

state estimator, but a new design concept.

| | ... ... . . .. ... . ... | | | |: '-l | • ( • '•i"|| | | | | |



Several circumstances arise in applicationis where the pseudu mai-

surement concept, by exploitieg the ounlque characteristics of mini-rate

and multiple-order sampling, can have consicerable favorable impact.

* IL i, desirable to vt i mize the number of sen-
sory;, or to

0 Provide for gracefully degrading system petrlor-
mance in the face of sensor failure.

* Not all the states are measurable.

"* Some measurements are noise free.

"* Outer navigation loops are noise free.

"* Outer navigation loops are updated at inherently

slow rates.

When one or more of these circumstances prevail in a particular

application, the contribution of this theory will be in terms of more

simple control laws, increased system performance, or more system flexi-

bility in accommodaLiug failures.

The report is organized in three volumes. Volume I contains the

theoretical developments as well as illustrative examples and case

studies,

Volume II describes two algorithms useful in the analysis of multi-

rate systems, while Volume III gives FORTRAN listings for these algo-

rithms. The first algorithm converts a continuous transfer function in

the s-domain into alternate dsesc -iptions in the z-, w-, and w'-donnains.

The second algorithm calculates a low data rate discrete transform given

a high data rate discrete transfer funct-ioa. Thits algorithn is

presented in Section IV of Volume I and later derived in Section IV of

Volume 11.

Volume I is organized as follows, Vector switch decomposition tech-

niques, which provide a straightforward model of the pseudo measurement

vector, are reviewed and extended in Section II. Also, in this section

the pseudo measurement concept is defined and illustrated with an exam-

ple.

2



An important facet of this effort hinges on the ability to interpret

the properties of mulcti-rate/multiple-order closed-loop systems. Fre-

quency response techniques provide effactive tools to investigate the

spectral characteristics of tniese systems. Toward this end, the fre-

quency rcsponse of the continuous variables of single-rate systems are

reviewed in Section III, with the necessary extensions for the analysis

of multi-rate system•. given in Section IV.

The extensions given in Sectioi IV make it possible to investigate

the spectral content of the continuous variables of multi-rate and/or

multiple-order config,,red systems. In addition, an important relation-

ship is deduced which makes it feasible to apply the switch decomposi-

tion/frequency response technique to the error analysis of simulations

of continuous systems and/or discretely controlled continuous systems.

Ai illustrative example demonstrates sOgnificant spectral differences

between a closed-loop system (employing an analog or digital controller)

and an all-digital simulation of the closed-loop system. The example

also treats the pLobiles encountered when simulation sortware is imple-

meuted on two different (independent) computers, each working in a

slighuly differer.t frame time.

The applicatton of the pseudo measurement concept is discussed

further in Section V. In particular, a case study using a longitudinal

model of the Y-16 is used to study the practicality of the approach

(e.g., iavestigace the magnitude of the required feedback gains).

A suimazry and conclusions arc presented in Sectio- VI.

3 I 3



SECTION II

VECTOR SWITCH DECOMPOSITION: CONSTRUCTION
OF THE PSEUDO MEASUREMENT VECTOR

A. INTRODUCTIOg

The prime objective of this research effort is the realization of

closed-loop digitally controlled systems with desirable attributes not

available in continuously controlled (analog) designs. To appreciate

the considerable merit of this viewpoint one need only recall that

couplers (data holds) which tie the digital computer to the control

actuators are themselves filters possessing characteristics which are

unrealizable with continuous linear filter sections. For example, the

slewer data hold forces the control actuator to move with smooth ramp-

like deflections which closely approximate the "continuous" deflec-

tions. Yet, it inserts deep, wide notches into the frequency response,

at multiples of the sampling frequency, which have no counterpart in

continuous linear filter theory. The impact of this frequency response

characteristic upon system performance can be favorable or unfavor-

able. It can certainly have an unfavorable effect if unanticipated

inputs and/or control inputs are attempted or required at o, . of the

notch frequencies. However, when. anticipated, thi frequency response

characteristic may be used to advantage (for suppressing feedback of

structural modes, foc example) and its disadvantages avoided.

In short, the ability of the digital computer to perform a variety

of unusual operations on input data lends credence to the idea of

achieving closed-loop systems with unusual attributes. This is the key

point of the present study where the logic of the computer is used to

take a scalar conitinuous output signal, sample it at a relatively high

rate, and then sort it out (in a particular fashion) into a vector of

"pseudo" measurements. The potential of the idea is significant, since

N 4



it offers an alternative path approach for providing gracefully degrad-

ing system performance in the face of sensor failure.

To begin, there is a brief review of the multi-rate transform domain

,primarily in order to review notation). Then, to put the pseudo meas-

urement concept in proper perspective, we discuss vector switch decompo--

sition ano show how it is used to model multi-rate systems. Following

this, a multiple-order sampling model is discussed.

Since any viable digital theory must be capable of modeling computa-

tional delay, a discussion of non-synchronous sampling is included since

it provides a basic theoretical structure for treating time delays.

Completing this background description, we are then in a good posi-

tion to set forth the pseudo measurement concept and indicate, via an K
example, its potential for achieving closed-loop configurations with

unusual attributes.

B. REVIEW OF THE MULTI-RATE TRANSFORM DOMAIN

A basic property of the transform domain algebra developed in Ref. I

is that a high sampling rate "operates through" a low one, provided that

the ratio of the higher to the lower is an integer value.

R RRT/M' --- C C cT/N

TIMg L..Mult-aJ StI

Figure 1. Multi-Rate System



in Fig. 1, the output equation is

C = GRT/(1)

Then

cT/N = CRIT/M 1t/N

= cTr/N i(T/t (2)

where N/M is an integer. The superscript notation denote-,s tihe ;,iiplinq

rate involved. For exampic, CT/N indicates that the signal C is saumpild

at N/T samples per second.

The general notation CT/N implies either CT/N(s) or 0 T/N(z) in this

report, where CT/N(s) represents the Laplace transform of the sampled

continuous time function cT/0(t) and CT/N(z) its corresponding z trans-

form. The correspondence between a sampled function in the s-domain and

its z-'transform is given by

cT/N(z) = ICT/N(s)>esT/N (3)

For continuous, stationary linear systems CT/N(s) is in general a non-

algebraic function of s and C /N(z) is obtained from C TN(s) using the

simple change of variable z = e sT/N. However, CT/N(z) could also repre-

sent the z-domain model of a completely discrete function (e.g., digital

computations in a computer) and thus have no direct counterpart in the

continuous domain. In analysis and design no distinction is required

betqieen the z-transform function derived from a sampled continuous func-

tion [e.g., CT/N(s)] and the z-.transform function that models a com-

pletely discrete function. The z-transform (and its extensions the w-

and w'-transforms) thus provides a unified analysis and synthesis tech-

nique for systems containing both continuous and discrete elements

(i.e., hybrid systems). This ability to model continuous and discrete

elements in a common discrete domain is perhaps the most fundamentally

useful property of the z-, w-, or w'-domains.



The transform product in Eq. 2 is obtaired by establishing a common

definition of the z-transform variable. That. is,

(;T/N(z)RT/M(zm) - GT/N(z)RT/M(zN/N) (4)

where

z = esT/N zm = esT/M (5)

The procedure is to first calculate the TIN and T/M z-transforms for

G(s) and R(s), respectively, and then replace the transform variable z

in RT/mt 2 ) with zm = ZN/M.

For a given G and R, a recursion equation can be written for Eq. 2

in a manner that is similar to the single-rate case for which N = M - i.

To see this, consider a simple example, for which we define z = e TiN

ljŽ, t

C(S) (6)
5+1

Then

cT/N = z RT/M (7)_ -TINi,

If the running index of the recursion equation, n, is tied to the z-J

operator, the time domain equation can be written directly using the

fact that the input is set equal to R(s) whenever n is an integer value

of N/MI Thercforc,

G Rn n/(N/N) = Integer
Cn= e"T/ N Cn_ + jo nN/)#ntgr(8)

0 n/(NiM) €llee

This agrees with the single-rate case when N' = N = I.

C11 e-T Cn_1 + Rn (9)

7a



These results are appreciably different in the presence of data

holds. However, the results remain quite tractable and are detailed in

Ref. 1 for the zero-order hold as well as the slewer data hold. The

slewer data hold is a coupler which produces a smooth ramp output over

the inter-sample period and, in addition, provides a continuous output

even at the sampling instants. Transfer functions for representative

data holds are given in Tabl• 1.

TABLE 1. SOME REPRESENTATIVE DATA HOLDS

DATA HOLD TRANSFER FUNCTION

Zero-Order M = 1 - e-sT

Hold M0 - s

Firs t-Order 2( iHoldMI = M so +fl

Second-Order = 2 + ±
Hold O 2T 12/

Triangular M 2 esT
Data Hold MA T e

M2
Slewer Data MMie = 0
Hold T

The "T/N" approach is very useful in the analysis of closed-loop

multi-rate systems, since the transform domain equations can be written

directly, without the need for comiputing an inverse. Using these equa-

tions, the time domain equations can bc written in the same manner as in

the single-rate case. An example is described in Fig. 2.
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Since the outer sampling operator {.}T/N operates through the inner one

if the ratio of the inner sampling period to the outer sampling period,

TIN, is an integer, Eqs. 13 and 14 reduce to

_____ ) 1T/ N
xf/N = [ N. -sesT/3'(s + ]) (RT/3 - XT/3) (15)

s- s+ 2) j 2

xI/N= (I T/2) 2 2s : ]T/N 2 (16)2 (T/2)S2(s2 + 2s+ 5)

Observe that two transform domain equations completely define the

closed-loop fifth-order system (exclusive of the data holds). Equations

15 and 16 can be used to calculate the inter-sample response with any

desired degree of time resolution by increasing N. The only restrirtirn

is that N must be divisible by 2 and 3; otherwise, it is arbitrary.

The TIN approach is developed in detail in Ref. I. It serves as the

basis for exteading the concept of frequency response, from merely being

the magnitude and phase of the sine wave that fits the sample points at

the sampling instants, to the case of fitting N sine waves to the sample

points and N - I inter-sample points.

C. VECTOR SWITCH DECOMPOSITION
AND MILTI-R_AT_ SAMPLT.TW

In essence, switch decomposition is a procedure wherein systems

having multiple sampling operations (occurring at fixed hut unequal sam-

pling intervals but with a sampling pattern which is repeated over a

fixed, finite time interval) are converted into an equivalent single

sample rate format. As originally introduced by Kranc (Ref. 2), the

method used a summing point methodology which proved to be extremely

cumbersome when the ratios of the sampling periods become high. For

this reason (and also because evolving state transition methods were

tending to push transform methods into the background), the method fell

10



into di,3use. However, there is much to recommend the switch decomposi-

tion concept for use in both time domain and transform domain analy-

ses. In the subsection that follows we will review the basic concept

aud remove some earlier restrictions by recasting it in iector form.

The vector form simplifies matrix block diagram manipulation for urulti-

loop, multi-rate sampled systems.

An example will make the basic idea quite transparent. Considrr Lhe

continuous signal shown in Fig. 3a to be sampled at 3/T samples per

second. This results in the sample sequence shown in Fig. 3b. The

sampled values have been numbered for easy reference. Suppose we now

sample the continuous signal with a sampling period, T. This results in

a) R
2T

b) R(T/3

2 0 I 1 12 fI13 jj

C) RT
1 11h 11

d hiRrf2 14

e) (e 2 RT/)R)T

Figure 3. Decomposition of a Sample Sequence

11 !
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the sample sequence consisting of sample numbers 1, 4, 7, 10, 13,

shown in Fig. 3c. Define this sample sequence to be RT .

Next, advance the continuous signal R by T/3. Then sample the ad-

vanced signal with a sampling period, T. This results in a sample

sequence consisting of sample numbers 2, 5, 8, I1, 14, ... shown in Fig.

3d. Define this sample sequence to be (eST/ 3 R)T. Finally, advance the

continuous signal R by 2T/3, and sample it with a sampling period, T.

This results in the sequence consisting of sample numbers 3, 6, 9, 12,

15, ... shown in Fig. 3e. Define this signal sequence to be (e2ST/ 3 R)T.

The significance of the switch decomposition concept resides in its

ability to provide an alternative expression for the original sequence

RT/ 3 in terms of several quantities which are each sampled simultane-

ously every T seconds. This alternative expression for RT/ 3 consists of
the sum of RT, (esT/3R)T, and 2ST/3

RT/ 3 
= RT + (esT/ 3 R)T e-sT/3 + (e2sT/ 3 R)T e- 2 sT/ 3  (17)

Equation 17 has a simple factored equivalent which is the product of two

vectors and the scalar R,

RTI3  = , e" 3  e~T/3 e : Rj (18)

Z e1 S'i 3 J T

Or, more compactly,

RT/3 - W(W*R) T  (19)

where W . e-sT/3, e-2sT/3j (20)

12



and

W = esT/3 (21)

e2sT!3 •

The extension of this scalar result to the vector case is discussed

in detail in Ref. 1 and will not be covered here. We proceed to a dis-

cussion of multiple-order sampling.

D. MULTIPLE-ORDER SAIPLIGE

Suppose that a group of sampling operations in a system is repeatea

every T seconds, the intervals between successive samples in the group

sequence being unequal. This is depicted in Fig. 4 for an example case

of four unequally spaced samples occurring before the sampling sequence

repeats. In Fig. 4 the notation X is used to denote that X is sampled

in a multiple-order manner.

T1 T2  T3  T T12T 2T 2T+T 3T

Figure 4. Multiple-Order Sampling

The multiple-order sampling operation can be modeled in terms of a

single-rate sampling operation, using the same type of notation given in

Eq. 19. let

X - W(WX)T (22)

13



where

W 1, e' r, e5T2, esT (23)

and
Wa 1, e:'T sT T e 1 (24)

The sequence specified by Eq. 22 is shown in Fig. 5. Note that

x T

(e STI x)T

x* w(w*X)T W (25)

(eST2 X)T

(eST 3 XlT

= XT + -sTl(esul x)T + eST2(esT2 X)T + e-sT 3 (esT 3 X)T (26)

The extension to the case where X is a vector is straightforward. For

example, if X is a two-dimensional vector, let

W 0

where the vectors Wa and Wb are each analogous to the W vector defined

by Eq. 23 but each is appropriate to the sampling sequence for the cor-

responding element of the X vector.

14



(eST 3 )T

Figure 5. Components of Decomposed Signal

E. NOU-SYNOII•ONOUS SANPLINIG

Non-synchronous sampling is a basic tool useful for modeling dis-

tributed computation architecture, data skewness in the A/D and D/A con-

version processes as well as the internal computdiiortai delay of the

digital computer. By definition, non-synchronous sampling occurs when

all the systems" sampling operations are repeated at the same rate but

occur at different instants of time (refer to Fig. 6).

In Fig. 6 both continuous signals, x1 and 2,are sampled at l/T liz,

but the x 2 sampler is "out of sync" with the x1 sampler by To seconds.

The sampling operation for xT is shown symbolically in Fig. 7a and for

11

x 2 in Fig. 7b. (* notation on x2is used here to indicate an "unconven-

tional" sampling operation.)
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TXi ,A!

T 2T 3T 4T

22'x 2T 3T 4 n: ý.ý

Figure 6. A Set of Non-Synchronously Sampled Signals

T|

x_ 7.xL"~V X2 xI]
JTL

(a) (b)

Figure 7. Sampling Notation

Figure 7b models the non-synchronous sampler with a ... er......

sampler by preceding the sampler with the operation W followed by the

operator W. That is,

x* =1(Wx (28)

where
-s TO esTO (9

W e- , W. = e so1(29)

16



Proceeding according to Eq. 29, one advances x 2 by TO seconds, sam-

ples at the I/T rate, and then delays (W x2)T by 1o seconds to obtain

the time sequence (refer to Fig. 8). Note how the non-synchronous sapi-

piing operations on x 2 is modeled in terms of a scalar factor; thus the

dimension of the, equivalent single-rate sampled signal, (W x 2 )T, is not

increased.

The model readily extends to the case where x is a vector.

(eI Oxt qz)tA T

7i

TT

Figure 8. Advance, Sample, Delay

F. THE PSEUDO MEASURENENT CONCEPT

It has now been shoan that vector switch decomposition can be used

to model multi-rate and multiple-order sampling operations. Moreover,

non-synchronous sampling (i.e., skewed data) can be treated, and there-

fore, of course, computational time delays can also be included. We are

now in a good position to discuss the pseudo measurement concept, using

Fig. 9 to indicate the several options available.

17
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T*

T

Figure 9. Pseudo Measurement Block Diagram

First of all, the notation W W in Fig. 9 is used to denote either

multi-rt.te or multiple-order sampling operations. The essence of the

pseudo measurement idea lies in the following observations;

" X* is the multi-rate (multiple-order) sampled
equivalent of X. It has the same dimension as
the vector X.

"* yT has tiue row dimension of W which may be con-

siderably greater (but never less than) the
dimension of the vector X.

Rather than feed back the entire fixed sequence ot samples in a

(scalcr) element of X", one may elect to feed back selected, individual

samples in the fixed sequence. These Individual samples are elements of

the vector signal, Y. Of course, on2 must exercise due regard for

physical realizability (a sample cannot be used before it is availa-

ble). Nevertheless, the digital computer has the ability to sort out

individual samples from the sequence and deposit them in their respec-

tive appropriate registers. This sorting process in effect creates an

enlarged veztor of measurements at a slower effective sampling rate. We

shall call the elements of this enlarged measurement vector pseudo

measurements because they are merely alternative samples of the same

basic variables.

AF shown in Fig. 9, the YT vector is defined in terms of time ad-

vance components and therefore caution must be used in interpreting the

significance of the various components (again, a sample cannot be used

before it is available). To avoid this difficulty, the pseudo meas-

urement operation is redefined in terms of "hat" operators (refer to

Fig. 10).

18



Figure 10. Reformulated Block Diagram

If, for example,

W e-sT0T C-sTl e-sT2 ] (30)

then

1 0 0 0

~sTo 1^ 0 e-T 0 0

W sT1 = !diag (31)

0 0 e 0

0 0 0 e -sT2

and

eS1

esT0  
I

e sT2

L-

Or, if multi-rate sampling is used, the extended switch decomposition

modeling components might appear as:

19
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W, [ 1, esT/3, e 2 sT/ 3 ] (33)

and

W [ 1, e-sT/ 3 , e-sT/ 3 ] (34)

Then

W 0 e-eT/3 1  
(35)

0 0 e-2sT/3

Clearly,

1 0 0 xT

X* xT/3 f W(W~X)T ] e-sT/2 0 (esT/3x)T

0o 0 e-2 _zT/3 9 .2 '1'1T/ X T
L IJL~ ~

= e-sT/3(esT/3x)T (36)

e-2sT/3 (e2sT/3x)T

Thus, X is the desired vector; each component has the samples in the

correct temporal sequence (refer to Fig. 11).

20



2T

3T 4Tt•

T/3x

L21 t4 tA•i I3 14AK
X, X

A _ST/3 sTI3x)T

X2 =e (e

tIIf2 _A/ 24

X3 0-sT/(e 2ST/ 3x)T

Figure 11. X, XT/3, and the Components of XT/ 3

G. AN ILLUSTRATIVE EXAMPLE

Consider the single-ratce system shown in Fig. ]2, where M is a zero-

order hold and the plant is

3s3 + 15s2 + 3 5s 4- 13 (37)(s + 1)(s + 2) 2 + (3)2]

Suppose C(s) (a scalar) is the only outpuL of the system available for

feedback. Further, suppose the design objeitives are to force a unity

steady-state response in C to a unit step input and to obtain an aa-

signed set of poles for the closed-loop system. let D(s) represent

21



DATA BUS, DIGITAL COMPUTE IRI 7TIh
T T1- I TI CTI

t, T IT T

I] _ _ _ _ __I I I

Figure 12. A Single-Rate Controller, T = 1.0 see

the plant poles, I.e., the poles of G(s). The poles for the dlscrettzed

plant plus data hold are represented by D(z) where

(GM)T . N(z) (38)
D(Z)

and

D(z) = (z - 0.3679)[(z + 0.1340)2 + ((0.019)2] , T = 1.0 (39)

Is + a] => z ,- -aT

+ a) 2 + b 2 ] - [(z - e-aT cos bT) 2 + (P-aT sin b'r) 2 ]

-2 ( 2 e-aT cos hT)z + Q-2aT (40)

' LhE a;igned poles for the closed-loop systenm are represented by A(z)

wherc

A(z) , (z - 0.1353)[(z 0.1988)2 + (0.3096)2] (41)

22



The roots of A(z) may be thought of as counterparts to

A(s) = (s + 2)[(s + 1)2 + (1)2] (42)

for a continuous system. This particular assignment is quite arbitrary

on our part and, moreover, we are not particularly advocating pole

assignment as a design method; our objective is to demonstrate that the

design goals can be achieved via the properties of multiple-order sam.-

pling.

It may be difficult to achieve these goals through design of the

filters F1 and F 2 . For example, from the equation (see Fig. 12)

CT [I + (CM)TF{Ff]'1 (GM)T FRIT (43)

It can be appreciated that the gain must be split between F1 and F2

filters in order to achieve the unity step response objective. More-

OveL-, IL- is LUL readily apparent that one can obtain

U(z)jj + (C;M)T (PFTFJ] = A(z) (44)

and stil] maintain a third-order characteristic equation (an implicit

requirement of the pole assignment objective).

P1aving considered a single-rate approach, consider next what multi-

plc;-order sampling has to offer. A multiple-order sampled configuration

is shown in Fig. 13. In this simple configuration, multiple-order sam-

pling is used only on the plant output variable. Multiple-order sam-

pl•.t m could also be employed for samnpling the input, R, and at the input

to the data hold, U. Restricting the example to sampling the output

variable will enable us to demonstrate the possihilities of multiple-"

order sampling without adding unnecessary complexity, The multiple-

orat.r sampling assumption allows us to feed back the pseudo measurement

vector c * instead of the scalar measurement JT. Furthermore, the intent:

is to use only a gant watrix, K, to attain the design objectives. The

particular choice for W and K is

23



"I I

I I1 T K II
I D4TA BUS, DIGITAL COMPUTER I

Figure 13. A Multiple-Order Sampling Controller,
T = 1.0 Gec

L 1, e-(1/10)s, e 4 s, -. 6 s, e- 7 s (45)

and

K = K 1 , K2 , K3 , K4 , K5 ] (46)

Then

00 0

r 0 0

W 0 (l,-04s 0 0 ~ tli (471)

[o C. o
0 e(/Os 0 .6 0

24
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and(

I.I
- .4s (48)

6 s

117s

From Fig. 13 (T =1.0 soc),

I + ( KNdjW)T (14CI¶T<R
(49)

wherec

N 0 0 0

">idiag 0M ~ s (50)

0 0 M

0 0 0 N

anad

CT (Qfl)T UT (51) f -

(KM~dW)T M, K4M [K1  ½
[KI, K2N, K(31i 4-, KMI

= ~4Ks,1'~~ K4e-,6 s, Kse-'7s] T

(52)
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or

(KMdW)T = 'MhKj K2 e(97/10)se-s, K3 e1 6 Se-S, K4 e" 4 Se-S, K5e'3se-SI j

._a LK1, K2 z-l, K3 z-1 , K4 4-1, K5 z-j , z = esT

(53)

Reducing Eq. 52 to Eq. 53 requires the use of the advanced z-transform

on each term in the Eq. 52 vector. For example, evaluating the second

term

[M(K 2 e( 9 f/10)s' e-s)]T (54)

gives

- e-sT¢- K K(21/10)s T (55)

Then

z-I z_1  K2  z =K2z- (56)
z z -

The remaining terms in Eq. 53 are evaluated in a similbr manner.

Inserting Eqs. 49 and 53 into Eq. 51 gives

CT (GM)T~I + [KI, K2z
1-, K3 z-I, K4 z-I, K5 z-1](W*GM)T I-

(57)

where
1

e(i/lO)s

W = e- 4 B (58)

e.
6S

e.
7S
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and

N 3s 3 + 15s 2 4 35s + 13 (59)
- (s + 1)[(s + 2)2 + (3)21

Carrying out the transform operations indicated in Eq. 57 produces

-1N(z)1

NN(z)2N(z)3

CT KI) Dz +\z-)LKI) K2%-', K3z
1', K4 z-', K5z

1 ] RTy-

z D(Z) Niz)L

(60)

W 1, i'L L

T

N N(z)
(e/O10)sN N(z)2
e"42 N 4 N(z)3
e"6s N N(z)4

ze.7s N(D D(z)

* .i

Performwing the matrix multiplication and taking the -iverse in Eq. 60

gives

CT N~) ____(62)

_ -_ D(z)zD(~) (~ Z (z) + KN(z)J

27
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with

KN(z) = KjN(z) 1 + K2 N(z) 2 z-' + K3 N(z) 3 z- 1 + K4 N(z) 4 z- 1 + K5 N(z)5z- 1

(63)

Equation 62 further simplifies to

(Z[ 1- ) N(z)I RT (64)

!zD(z) + (z - i)KN(z)

The form of the entries in the column vector (W GCN)T (Eq. 61) will

be (a 0 z3 + a -z2 + a 2 z + a 3 )/D(z). These are tabulated in Table 2 for a

basic sampling cycle period of T = 1.0 seconds. The first column corre-

sponds to N(z) 1 in Eq. 61, the second column to N(z) 2 , and so on. 'Me

feedback gains that accomplish all design objectives are tabulated in

Table 3. 'Me design objectives are repeated below:

f Closed-loop pole assignment as specified by

Eq. 41.

0 Unity steady-state response in C for a unit step

input R.

The first objective is satisfied by equating like coefficients in Eq. 41

and The denominator in Eq. 64. That is,

zD(z) + (z - I)KN(z) = A(z)

= (z - 0.1353)[(z - 0.1988)2 + (0.3096)2]

(65)
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TABLE 2

NUMERATOR CGEFFICIENTS AS A FUNCTION OF ADVANCE PARAMETER A

A0 r/10 .4 .6 .7

a0 3.0)0000000o 2.47558005) 2.2.51930038 1.773697950 1.584956596

a] -2.314717621 -1.623868245 -1.340786259 -0.756522207 -0.537430945

a 2 -0.195116512 -0.029566508 -0.095749095 -0.206712756 -0.235858883

a 3 -0.067316458 -0.009062870 -0.002312250 -0.002620445 -0.001415664

Note: D(z) = (z - 0.367879 4 4 1)(z2 + 0.2677961830z + 0.018315639)

TABLE 3. FEEDBACK GAINS

K1 0.091506404

K2 -1.494955697

K3  2.832023694

K4  -4.131755870

K5  2.703181447
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The second objective is realized by applying the final value theorem to

Eq. 64 for a unit step input RT = (z)/(z - I).

CT Lim (z - I) CT(z) (66)zT z

Before leaving this example, the physical implications of acquiring

the C output signal in Fig. 13 will he addressed. Dhe multippe-order

sampled signal C* is g.iven by

C* =W(W.C)T

T

1 0 0 0 0 1

0 e-(r/lo)s 0 0 0 e(Tr s

0 0 e 4s 0 0 e •4s C

0 0 C- 6S 0 .6s

0 C, 0 0 e"7s C .7s

CT

,-.(T/lO)s (, (-f /10)s C) T

e-.4s (e.4 sc4sC) T (67)

.6s(e 6S C)-P

L -. 67(e 7sC) T

This sampling scheme analytically models (via single rate sampling) the

actual physical operations within an analog-to-digital converter that

produce samples of the continuous output variable C in a multiple-order

format. These multiple samples must be physically separated according

to the selected scheme as indicated by the W vector and W matrix. - In

this example, a group of five samples in a niu"tiple--order format must be

physically generated every T seconds at intervals of (O)T, (7/10)T,

30



0.4T, 0.6T, and 0.7T seconds. These individual samples are stored in

appropriate storage registers within the computer until all samples

within a group are obtained. This group of samples is then added toge-

thier with each sample first multiplied by an individual gain factor (K 1,

K2, K3 , K4 , K5 ). This process implies that a full frame of delay equal

to T seconds is inherently present in every component except the first.

That is, as previously pointed out, samples cannot be used to form the

scalar feedback signal in Fig. 13 before they are available. This

required physical delay shows up in the analytical model as Eq. 53

(repeated here):

(KMdW)T = [K., K2 z-., K3 z-H, K4 z-1 , K5 z-1 ] (68)

where the z delay factors assure that samples from the previous frame

time (n - I)T are used to form the scalar feedback signal for the nT

frame time.

H. SOME PROPFERTIES OF TUE PSEUDO MNASUREW3 CONCEPT

While this is not a particularly realistic design problem, a number

of properties of the pseudo measurement concept, which accrue from use

ot multiple-order sampling, have been demonstrated:

Achieved unity steady-state gatn without forward
loop compensation.

" Generated a five component multiple-order sample
vector from a scalar analog signal.

" Assigned three poles using only the one available

analog measurement.

"* Avoided compensation networks.

" Accomplished pole placement with multiple samples
of a single output variable (in distinction to

single samples of several output variables).
This has been accomplished without using an ob-

server or Kalman filter to supply estimates of
unmeasured states.

31
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We remark in conclusion that the pseudo measurement concept is not

the something-for-nothing gambit that it might appear to be. In connec-

tion with the illustrative example, a price is paid. This price is more

free uent sampling of the plant output variable than for a single-rate

system having the same basic sample sequence rate. That is, additional

samples of the plant output variable have been used as an alternative to

using digital filters (compensation) or as an alternative to measuring

additional plant output variables. In more complex multiple-order sam-

pling schemes the general nature of the available tradeoffs will be

similar to the alternatives for our simple example. A three-way trade-

off (among number of output variables measured, number of samples of a

given set of measurements taken in the sampling sequence interval, and

complexity of digital filtering) will exist. Since "number of output

variables measured" translates into "number of sensors," the tradeoff

against "number of samples" greatly favors taking additional samples in

terms of practical system hardware considerations.

The tradeoff of "number of samples of a given set of measurements

taken in the sempling se.quence interval" and "complexity of digital fil-

tering" also favors taking additional samples. This is the case even

though the number of registers reqaired is not affected strongly. How-

ever, the number of digital multiplications required may be reduced sig-

nificantly. This, in turn, can reduce computational burden, which is

especially important in a microprocessor computing environment. Hence

the potential contribution of the pseudo measureImUt CuhIcepi. Lu cot

reduction in system hardware is realized.

The pse:ido measurement technique also has the potential to provide

for gracefully degrading system performance in the face of sensor fail-

ure. For example, if a sensor failure can be identified and isolated,

then it is possible to divert the computing capacity in the failed

sensor path for processing of additional samples of different output

variables having operative sensors. For this use, the control law is

restructured in a predetermined way following a failure. The way
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in which the control law is restructured is dependent upon the particu-

lar failure. This may enable significant reduction in number of redun-

dant sensor components when coupled with so-called analytical failure

identification techniques. The latter compare the measurements of dif-

ferenL output variables for consistency.

Finally, we remark that the sampling sequence, within Iie basic T

frame time of 1, e- 7/10S e-'4s, e-'6s, e-' 5 s, was selected only to

demonstrate a multiple-order sampling environment. There is nothing

especially magic about it; in fact, it might even be a poor choice. We

cannot tell this until the tools needed to access the spectral implica-

tions of this choice (the topic of the next two sections) are developed.

3
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SECTION III

FREQUENCY RESUiNSE OF SINGLE-RATE SYSTM

A. INTRODUCrIoN

When a continuous, stable, stationary linear system is excited by a

sine wave, its steady-state output is comprised of a single wave at the

same frequency as the input. It differs from the input wave only by a

phase angle and a magnitude factor. Moreover, it is unnecessary to com-

pute the actual transient response of the system when its behavior over

large epochs of time is of interest, since both the magnitude factor and

phase angle can be read from a Bode plot.

A similar but more complex situation exists when a sampler and data

hold couple the sine wave input to the continuous system. This configu-

ration is referred to as a "dlacrctcly excited systcm." Civcn that the

continuous system is stable, the continuous output waveform will contain

a wave at the fundamental frequency and all of its aliases. Thus, if

the system is forced with I sin bt, 0 < b < 2ir/T; the output will con-

tain terms at frequencies b, b + (2ir/T), b + (4n/T), .... The relative

amplitudes and phase angles will depend on the data hold employed as

well as the system transfer function. Nevertheless, given the data hold

and system transfer functions, the magnitude and phase angle for each

and every component can be read trom a particular ýJiode plot." Notice

that this concept of frequency response is more comprehensive than the

traditional concept of the "sampled spectrum" (see, e.g., see Ref. 3),

which is limited to determining the single sinusoid that fits the system

output samples at the sampling instants.

In the subsections that follow we review the frequency response con-

cept for continuous systems and then proceed to the frequency response

for discretely excited open-loop systems. Finally, the manner of appli-

cation for single-rate sampled closed-loop systems is given.
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B. CONTINUOUS SYSTEM FREQUENCY RESPONSE

It will be helpful to first review the frequency response concept

for continuous systems. Let R in Fig. 14 be a unit sine wave input with

frequency )o cad/sec. The Laplace transform of the output is

C(s) = G(s) R(s) = C(s) s2 (69)

P C

Figure 14. Continuous System

Equation 69 can be expanded in partial fractions as

A(S) Bs + Terms associated 1

C(s) = 82 + ,02+- + - --- ,T2+ withli characteris° c) (70)
52 +~ 'n4- polynomial of C(s)

T11 bracketed term in Eq. 70 determines the characteristic behavior of

the system which can be stable (negative eigenvalues) or unstable (posi-

tive eigfenvalues). Nevertheless, the steady-state sinusoidal behavior

is completely defined by the partial fraction coefficients A and B,

since once they arc known the steady-state time response can be written

directly as:

C(t I = A sin ,,$t 4 1B cos '. 0 t

- VA2 -i B2 sin (,jot + ') (71)

hre ; tan-1 (13/A). The deLtatls of solviTng for A and 13 show clearly

the reldt tonship between the Bode plot and the steady-state waveform.
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To solve for A and B, multiply Eq. 70 by [i2 + u2] and evaluate the

result for s-- jwo:

F Terms associated ]
G(S)o (Aw + Br)s + with characteristic ( ,2

O ls)W~jw - (Au0 + s~l~=jw 0 + polynomial of G(s) S

(72)
or

G =j. = A + jB = A2 + 82 eJ tan-1(B/A) = G(jwo) (73)G0s GI so ) 7 3

To summarize, we see that a sinusoldal input at frequency wo produces a

steady-state sinusoidal output waveform having the same frequency. it

differs from the input only by a magnitude factor and a phase shift.

Both magnitude factor and phase shift for any given input frequency, 1o0

can be read directly from a Bode plot for G(jwo). That is, for any

given input frequency w0o,

A + jB -G(s)js=Jro (74)

The sections that follow expand this "frequency response" viewpoint to

include disc-etely excited system6.

C. MATHEMATiCAL PRELIM1iARIES

Let R be a sinutsoid of unit amplitude and frequency b rad/sec. It R

is sa.,pled at 1/T samples per second and is thern described in terms of a

sample sequence having N/T samples per second, the result is:

ZN s.n bT esT/N (
z2" 2(cos bT)zN + I-

The notatlor follow, Ref. 1. The, supers,•pt denotes the period oW
the sampling operator. F"or example1, R and RH/I denote sampling: periods
of 'T ý,nd T/3 seconds, respectively.
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The following development is for later rIse. First, find the N factors

of' tre denorntnator of E~q. 75. This, in turn, permits partial fraction
"xirans Ion. Thisq expans;ion oontainr-ý Lerms which correspond to ,amplod

'ý l1rerrle tav y ti Ime frirr tt urs. For e <amp) n , if f ( t) =sin h t-, then:

= ~ ~ ~ ~ ~ ,I [snh]TbJ(, 7f F(Z) = z2 -2(cos bT)z + 1 (6

11owevfer, anr e lernent~ary sampled time function corresponding to

F (z) v, zsibT (717)
+2- 2(cos bT)7z + I

i S rIOt ýrnmudltely apparent (tire denomi.rnatu or(f 1Eq. 77 Is one. of thre N
fafrtors (if tire dQnor)11nfnaor of Eqj. 75). Thi~s s Itiml ion is remedied by

addring ir tu tire trig, funet ion argrrmLcrrs so tLret F(,z) in Eq. 77 has a
recorini anhic trn(e do0main coLunterparL. T-or exam2jple, Fq- 77 hecomec :

F~)=72- 2 cos [h+(r/'r)T +7 IK: m l in ( b +/~

(78)

Consider Owr- dlenominator of 1`q. 75 for thre special case of N = 2:

-2 c os hi>1.2 -1 1 1Z2 - 2(Cos I?-E)z .+ 11172 + 2(Cori ýT' + ij (79)

Thre bign of the cout-f -i ent of 7 in the las~t factor on the righrt-hand

sidu of Eq. 79 can be Chanrged by adding; Tr to the argument VT/2:

74 - 2 co-, hI-> 2 + Z2 - 2 (Cos bl'i>7 4 1](7. - 2jCOof;b + ~2n) Tjjz+
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Thus, for N = 2, the partial fraction expansion contains terms which corre-

spond to sampled sine and cosine functions not only at the input frequency,

b, but also at the first alias, b + (2v/T), of the input frequency.

The general result is obtained by induction by repeating the exercise

for N = N1 and for N = N1 4 1 (Ref. 1),

z2N - 2 cos bTzN + I N (1 2 - 2z cos b + 2 ] + 1) (81)

_ I kz s b + 2Zi11n) + (sin Rb + 5m J2J

n=OT)N

(82)

Thus, the sampled sine wave, [sin btIT, can be described alterna-

tively in terms of a sum of stnusoidal components at frequency b rad/sec

and its first N - 1 aliases sampled with period T/N.

D. OPEN--L.OOP FREQUENCY RESPONSE - CONTINUOUS OUTPUT SAMPLED

Consider the system of Fig. 15 where G(s) represents an arbttrary

transfer functLion and M represents an arbitrary data hold. Suppose R is

n unit amplitude sine wave and the output is samp)led with period T/N.

Using multi-rate sampling results from Section 11,

CT/N = IGMRTIT/N . (cM)iT/N RT

zN sin bT sT/N (83)SG)/ 8-- , a = e'' ~ (3
z2 2(cos hT),14+
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Elxpanid Lhe right-hand side of Eq. 83 in partial fractions:

(:/N N-i Anz sin wn(T/N) + BnZ[Z - cos uh(T/N)]

=O z2 - 2z cos (on(T/N) + I

+ [Terms due to modes of (GM)T/N] (84)

R T ~ T/N

Fipure 15. Open-Loop System
T 'N

Assume that responses in the modes of (GM)T/N approach zero as t +

i.e., that a]l modes arc stable. This restriction simplifies the nota-

tion in the derivation (the development that follows is valid whether

the modes of (CM)T/N are stable or unstable). In Eq. 84,

2un
wit = b +- • n = 0,1,2,...,N4-1

For thC present, assume b 1 2R/T. The steady-state waveform, at the

-ampl3in,•, ivitants, can be written as:

c r (An sin writ + B, Cos (.0,t)] (85)
nl 0

To s,-Iwy for An and Bn, multiply each side of Eq. 84 by

i - 2z c0os Wi (TIN) + 1] 0 < k ý (N-1)

and eVyJlLate '-or z Iwk(T/N) . "lhe only uou-zero term on the right-

hand side of tLlit result occurs for n = k.
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(G)T/N z~ sin 1IaT 2.2osop(/zi]
i(GM - 'p7-2 2<1APiz(T[1/N)

N-I (A~z sin aý(T/N) I + B.Z~zcssT1 [z-2 - c-q
S-[z -2z eoc 1(T/N) I 1 (T/N)n 0 2:-; co!3 %•(T/Ifz + I

(86)

For any n # k, the right-hand side of Eq. 86 is identically zero since

Z2 - 2[cos W k (T/N)]z + 1 = [- cos Wk T/N)] 2 + (sin wk(T/N)]2

(87)

vanishes when

z = 1W (T/N) = COS wk(T/N) + j sin wk(T/N) (88)
kkk

Evaluation of Eq. 86, subject to the constraint of Eq. 88, is a

tedious chore (Ref. 1). However, the result is relatively simple:

1 (GM)T/N, z es/N (89)
n + JBil -- •-•z= l4 W n(T /N ) e T 1

Notice in particular the definition of z used in the evaluation.

To summarize, when the system is forced by sin bt, the steady-state

output waveform, sampled with period T/N, is given by Eq. 85. The coef-

ficients An and Bn in Eq. 85 are computed using Eq. 89.

For example, let

N =1 - e-s a
, C(s) a (90)

40
k

I I I iI I I II



so that

S(GM)T/N 1- e-/N (1 - 5 -N)
N( N(z - eaT/N) (1 - 1) (91)

It is instructive to plot the amplitude ratio of the frequency

response for Eq. 91 with N as a parameter. For the sake of clarity, the

plot is versus w rather than log w.

Refer to Fig. 16. Notice that over the range of frequency for the

plot, 0 c w < 8Tr/T, the N = I case amplitude ratio folds about the fre-

quencies n/Tv 3u/T, ... , 7h/T; the N = 2 case folds about frequencies

211/T, 4s/T, 6n/T; and the N = 4 case folds about w = 47r/T. However, it

can also be observed that the various amplitude ratio plots are periodic

with frequency. For N - I this period is 2ir/T; for N = 2, 4iT/T and for

N = 4, 8n/T. Each period contains precisely the number of frequency

points (at the input or its positive alias frequencies) required to

match the continuous steady-state time response at the sampling instants

0 N=t

_200 o 1 ; T I ; w , =2 7r

U -20I

-20 N =2S)/

I N :4_.__ • ..

0 v 27r 37r 4
7r 57r 6r 7w 8vr

w (rod/sec)

Figure 16. Magnitude Plot for N = 1, 2, 4
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and at N - I equally spaced inter-sample points. Consequently, it is

the sampling frequency interval rather than the folding frequency inter-

val that is fundamental to generalizing the concept of frequency re-

sponse.

Consider the use of Fig. 16. Imagine that a unit amplitude sine

wave with a frequency r/2 is input. In the N = I case, our interest is

matching the continuous steady-state time response only at the sampling

instants with a single sine wave. The magnitude and phase angle (not

shown in Fig. 16) can be read from this plot at w = z/2 (or i/2 + 2u/T,

n/2 + 41T, r/2 + 61r/T, ... ; any of these points gives the correct

value). Clearly, if the objective is to match at the sampling instants

with a single asinusoid, the frequency could be b plus any 21!/T multi-

ple. One cannot tell the difference once the waveform is sampled. In

fact, the "sub" aliases at b - (2T/T), b - 4n/T will also work. These

"sub" a•!ajses are the difference tcrms which arc promwinent in iudula Liiu

theory.

The N = I plot in Fig. 16 corresponds to the "sampled spectrum" fre-

quency response of sampled data control theory. Consider the N = 2 case

wherein the objective is to match one inter-sample point as well as the

sample points. Let the input freuency be Tr/2 and note that the points

at w = T/2, '/2 + 2w/T give the magnitude (and phase) for the sine waves

at those frequencies, as would the points 1/2 + 4r/T, v/2 + 6n/T. Sup-

pose next that the input frequency is b = i/2 + 2Tr/T. Clearly, the

second required component could be read from the "first alias" at

b + 2/T or the first sub-alias at b - 2w/T (or, for that matter, at a

host of other frequencies).

In the N = 4 case, four sine waves are required to fit three inter-

sample points as well as the sample points. If the input frequency were

b ' u/2 + 6n/T, and if the plot of Fig. 16 with its limited range of 8r

were the only one available, clearly it would be to our advantage to use

the "difference" frequency points at w a b - 2r/T, b - 4w/T, and

b - 67r/T to establish the magnitude and relative phase of the other

three sine waves.
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Consider now the generalization of these observations. Notice that

the N sitne wave components required to match the continuous stady-state

tine reponse at the sampling instants and at N - I equally spaced inter-

sample points need not have frequencies from within one period of the

amplitude ratio plot. However, the frequencies used must each be an

alias separated by (2n/T)Nk (where k is an arbitrary integer for each

frequency) from the N alias-related frequencies falling in any one

period of the frequency response. This Is evident in the example for

N = 2. If the input frequency is r/2, one would ordinarily choose sine

wave components with frequencies x/2 and [m/2 + (2w/T)J to represent

the continuous steady-state response at the sampling instants and one

inter-sample point. Alternative choices of frequencies are 1/2 and

[u/2 + (6n/T)], and so on. Choices of n/2 and [n/2 + (4n/T)J or

[r/2 + (2i/T)] and [n/2 + (6n/T)J are not alternatives because these

frequency choices do not satisfy the separation criterion stated above.

This brief discussion associates aliases and sub-aliases with the

suM and difference frequencies of modulation theory. It is not the

case, however, that sum and difference components are necessarily both

present simultaneously in the output. It is Thown above that only

N components are needed.

The case where N is extremely large is also of interest. Let N + o

after evaluating Eq. 91 at z - I w (T/N):
n}

e- aT/P4 1- -N!

N(z -aT/N) I z-1 T

N[I Wn(T/N) -aT - (92)

N+oo
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An indeterminate form is obtained. Therefore, use L2iopltal's rule

twice [substitute I wn(T/N) - cos w,(T/N) + j sin w0n(T!N), etc.] and

obtain (see Appendix I of Ref. 1):

N s(s + 1)iz=14wn(T/N) im
N+m

I - e-j'T 1 _ 1 - e-T (93)
jtWnT 1 + j•n sT s +93J

where z • esT/N. That is, as N + -, simply divide GM by T and evaluaze

the coefficients at s = jwn. This is representative of the general

result of the next subsection.

E. OPEN-LOOP FREQUENCY RESPONSE: COMICINUOUS OUTPUT

In the previous subsection it was shown that

A, + = (GM)TiN z = (94)N z=14wn (T/N)

To deduce the behavior for infinite N, re'irtte Eq. 94 as

#h-(GM)T/N1 T ' k- (GM)('s + j TKN (95)
NT T (_ K k_...

The T/N's cancel, and as N gets very large only the k 0 -irm conttri-

butes since all "aliased" components of the spectrum have moved to in-

finite frequency. Therefore,
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lm I (GM)T/N - GM, eT/N
N+- .N Iz=l an(l/N) T s=j"n z e (96)

w n = b +- n = no no + , ... , - no

where

no = -- w (s = 2--
1.0s iINT T

The e;lample of the previous sectton with N finite can now be studied

for N infinite. This result gives the frequency response for the con-

tiiuuous output.

An + jBn = I - -T 1 j (97)sT s+ + ls~jwn

A Bode plot for this result is shown in Fig. 17. Componeuts for the

input frequency b = 1.0 rad/sec and its aliases have been indicated with

the square symbols.

Interpretation of Fig. 17 is as follows, Suppose a unit sine wave

at I rad/sec is input to the sampler. Then, if the amplitude ratios and

phase angles for sine waves with frequencies 1, (1 + 21/T), (I + 44/T),

*.., are read from Fig. 17, and these components are added together, the

resultant waveform will be an exact match ot the actual steady-state

output waveform in Fig. 18. One might expect this waveform to be very

nearly sinusoidal, since the first alias is attenuated on the order of

30 dB, relative to the inpat component. However, the steady-state time

response does not bear this out, as can be seen in Fig. 18. The reason

is that the sunmation of alias terms is significant despite their small

individual size.

Again, in connection with Figs. 17 and 13, consider a (1 + 4T/T)

rad/sec unit sine wave input to the sampler. The steady-state output

will contain sub-aliases at 1 rad/sec and (1 + Zn/T) rad/sec; a compo-

nent at the input frequency, (I + 4n/T) rad/sec; and other aliases at

(I + 6n/T), (I + 8/f/T), ... , rad/sec. The amplitude ratio and phase

angle for each component is again read from Fig. 17 (at points indicated
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by tlhe square symbols). When these components are added the steady-

state time response is again that in Fig. 18. Thus, the continuous

response spect rum and steady-state time response are the same for a sine

wave input of given frequency as for a sine wave input having a positive

frequency which is an alias of the given frequency.

Another observation is that the aliases do not represent "harmonic"

components but rather represent modulation components which must add

together properly in order to match conditions at the sampling instants

for the hasic period, T. It can be seen in Fig. 18 that the "steady

state" does not necessarily imply "periodic." Periodic waveforms occur

only when the input frequency and the sampling frequency have an integer

relationship with respect to one another.

I Or

I 2160\62 64 66 \6670/ 72 \7476/ 78

r (t) si t GMT ec)

i Figure 18. "Steady-State" Time Response

i ~F. SIN'GILE-RATE CLOSED-LOOP FREQUENCY RESPONSE:

Closed-loop results are dependent upon the configuration of the

digital Loops. !lowever, the has ic analysis procedure is independent of

configuration. It is important to understand this procedure, and in

parttcular the simpli fications that occur in analysis of closed-loop

systems.

Consider the (vector) system shown in Fig. 19. The objective is to

f ii the coefficients that characterize the spectral components of the

coot 1 ulous response, C, i.e. , the frequency response, * Th proceoL :e for

this example is typical. First, solve fer the vector component at the

input of the data holds.

. .6
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Figure 19. Illustrative Vector Closed-Loop Configuration

ET = GTRT - GTGT(GM)TET (98)
1 1 2

Therefore,

E = [I + GcTT(Go1)TF' GTRT (99)
1 2 1A

solve f(r C(s):

C (GM)[I + GTGT(GM)T]- GTRT (100)

The spectrum of C(s) is of interest. It is determined by first finding

the spectrum of CT/N and taking the limiting case as N + -.°

Let the input be a iinit sine wave at frequency b rad/sec and let

z = esT/N (101)

so that

RT = ZN sin bT (102)
z2N - 2zl1 (cos bT) + I

Using Eq. 102 and the results of Section 11,

CT/N = (GM)T/N[I + GTGT(GM)TI'- GTpRT (103)
14 2
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For the sake of brevity write Eq. 103 as

CT! N = C-1N '•RcF (104)
A B

Expand the right-hand side of Eq. 104 in partial fractions:

cT/N zT/N CT gin bT -
A B z2N - 271 oes bT + I

N-I Anz sin wn(T/N) + %az[z - cos tn(T/N)]

n=01O z' - 2z cos wn(T/N) + I

+ [Terms due to modes of GT/N GT (105);
A Bi 15

Assume that responses in the modes of GT/N GT approach zero as t ÷ .
A R

i.e., that all closed-loop system modes are stable. In Eq. 105,

Wf = T n = 0,1,2,...,N-1 (106)

Notice that Eq. 105 is exactly the same as Eq. 83, except (GM)T/N

Ias been replaced by T'N 0GT4  Hence a crucial result is ebtained using-A -B

Eq. 89 :

A !T/!NGT (107)
jBn = N A BIz=l1twn(T/N)

Bu t,
BuCTB(-) A GT(zN) , = esT (108)

B B

because of the local definition of z as esT/N. Therefore, using
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[ l/j4n(T/N] N T

= cos WnT + j sin 0),nT

= cos [b + (2rn/T)]T

+ j sin [b + (2rrn/T)IT

= cos bT + j sin bT

we obtain

C'j~zN) _GTUZ (109)

Thus, ZN in can be replaced with 0 provided it is evaluated for f =

14bT instead of for z = 141n(T/N). This amounts to a simple (and very

convenient) change of variable. At this point the result is:

An +T!N(,.)/T z) z CT siN

An + (JT = ± Iz=Isn(T/N) (11:0).bT

Equation 110 is the basic resul.t for the finite N case. To reiterate,

to find the coefficients of the N sine waves matching the T/N sampled

output, C, compute the usual puised transfer functions for

Gii (7 T cl -f-1 GT -~s 11

and evaluate it for

2i 14.bT (112)

Next, compute the usual T/N pulsed transfer function for 0 A as a fune,-

tion of z and evaluate it for z = l14  (T/N) where hn I) + (21in/T).
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Thus, it is superfluous to consider GT as a function of zN; it suf-

fices to consider it as a function of 2, Moreover, only GAT/N is a func-

Lion of N; this simplifies obtaining the limiting case tremendously.

For tihe case of N + -, the continuous case, we obtain

A + JB B z=4bT

Equation 113 is the desired result for the given closed-loop config-

uration. * However, it is the procedure which is key. One can follow

the details through For other configurations quite easily.

An illustrative closed-loop frequency response example is shown in

Fig. 20.

G. SGMILON SLJCAY

The "sampled spectrum" frequency concept of sampled data control

theory is concerned with determining the single sinusoid that fits the

output of a single-rate system at the sampling instants. In this report

the frequency response concept has been extended to encompass the con-

tinuous spectrum for the continuous variables of a discretely controlled

system. Moreover, the theory is s,_fftcent.ly camprchc;nsive to Cover

cases wherein a group of N sinusoids is usea to match the continuous

variables not only at the sample points but at N - I equally spaced

inter-sample points as well, N may be finite or infinite. Infinite N

corresponds to the true continuous spectrum. The practical value of

knowing the true continuous spectrum for continuous physical variables

*Accurate numerical determination of (,(Z)lz1lbT may prove diffi-
cult at high sampling rates. This is the result of small differences
between large numbers which occur in the computations as poles and zeros
approac-h the unit circle. In this event, one is well advised to carry
out equivalent computations in a domain where numeri.cal conditioning is
much improved (e.g., in terms of w' or w).
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Figure 20. Mjagitjude Plot for Closed-Loop System

is self--evident. For example, this information cart be used for evaluat-

ing inter-sample ripple and for guiding continuous filter selection.

Cases wherein N is finite also have important practical application as,

for example, in the bench validation of the digital controller hardware/

software combination. Digital controller characteristics are often

specified in terms of end-to-end "frequency response." On the bench, if

continuous outputs (say from data holds) are sampled at a finite rate (N

is finite), the difference between the measured frequency response and

the true continuous frequency response (N + -) may be significant. The

results of this report can be used to predict, minimize, or correct for

the difference between measured and true frequency responses.

Results for closed-loop cases depend upon the specific configuration

of the digital loops. However, the basic analysis procedure is indepen-

dent of the loop configuration. The procedure is to obtain the pulsed

transfer function matrix relating the outputs to the data holds and the
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inputs through which the (sampled) sine wave inputs enter. The conttnu-

ous system (including data bo.ds) is placed in cascade with the output

of the pulsed system. Frequency rerponse is then evaluated in exactly

the same manner as for any discretely excited open-loop continuous

system,

Corresponding results for two rate s.rmplcd closed-loop systems are

contained in Ref. 1. Extensions for true riiujti-rate sampled closed-loop

systems will be developed in Section IV. In addition, the theory, in

Section IV, is extended to provide a tool for quantifying fidelity of

d-igital simulations of continuous systems.
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SECTION IV

FREQUENCY RESPONSE OF MULTI-RATE SYSTEMS

A. INTRODUCTION

The frequency response of digitally controlled single-rate systems

was discussed in the previous section. The manner in which one treats

two-rate systems is given in Ref. 1. We will omit a review of the two-

rate case and move directly to a discussion of multi-rate/multiple-order

configurations. It will be shown that the basic tools developed in this

section are ideally suited to a variety of situations such as defining a

Bode plot for digitally controlled closed-loop systems, a Bode plot for

the simulation of a closed-loop system, and the Bode plot associated

with a simulation wherein more than one independent processor (e.g.,

multiple computers or microprocessors) is used to implement the computer

code.

B. A BASIC RESULT

Let the general multi-rate/multiple-order open-loop system of Fig.

21 have a sine wave input.

In Fig 2L,

= (GIRj) (114)

CT/N = [GGRt]T/N (115)

where a, B represent sampling schemes with a basic period of T

seconds. For example, a might represent a multiple-order sampling

format; 0 might represent a multi-rate and/or pseudo measurement format

(Section II).
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a kp LK..jT/N

Figure 21. tiulti-Rate/Multiple-Order
Open-Loop System

Using switch decomposition, Fig. 21 takes on Lhe representation of

FiV. 22. Clearly,

C' = W2 (W2 .GIWI J T (WI.R) T  (116)

and

CT/N = (Gw 2 )T/N (W2 ,G*WI%)T (WLR)T (117)

T T T/N

Figure 22. Open-Loop System with Switch Decomposition

If t represents multiple-order sampling ai'u a pseudo measurement

format using multi-ratu sampling, the switch decomposition modeling

components might appear as:
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-Tos -Ts i Ts 2

W1 i eT , e S, e-2s] (118)

1

eT Os

W,= eTlS (119)

eeT2 S

and

W2 > W2  0 -slT/3 0 (120)

0 0 e-2sT/3

W} 2, e z:;T/03 ](121)

' [e2ST/3

Comparing Eq. 117 with Eqs. 83 (or Eq. 104), we see that only one new
facet has entered the. problem, namely (W I*R)T replaces RT Consider,

therefore, a generic component of (WI,*R)T - for instance the scalar

(e TSR)T, where 0 4 A q 1.0.

For R = si bt and A zero (e - 1), the output equation (Eq. 117)

becomes

CT/N zT/N 'T ZN sin bTz = esT/N

(3GW2 T/wz*GIWi) z2N - (2 cos bT)zN

(122)

where RT is described in terms of a N/T samples per second model. For

the sake of brevity write Eq. 122 as

cT/N CT/N ;T ZN sin bT (123)
A B z 2 N - (2 cos bT)zN + 1
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Expand the right-hand side of Eq. 123 in partial fractions:

(;T/N GT/NGT zN sin bT
A B z2N - (2 cos bT)zN + I

N-I Anz sin wn(T/N) + Bnz[z - cos in(T/N)i

n=O z [2 cos wn(T/N)Iz + I

+ [Terms due to modes of GT/NGT] (124)A BJ

For non-zero L, we use the advanced z-transform on (eATSR)T and

Eq. 124 becomes

cT/N cT/IN T zNj(sin bAT)zN + sin [b(1 - A)T]1
"A B z2N - (2 cos bT)zN + I

N-I Anz sin un(T/N) + Bnz[z - cos wn(T/N)]

nEO - [2 cos w+ I
nýO n(TN•T/N+T

+[Terms due to modes of GA T/NB] (125)

Assume that responses in the modes of GT/NT approach zero as t +A B

i.e., that all modes are stable. In Eqs. 124 and 125

a0  = b +--- , n = O,1,2,...,N- (126)

[More generally, n = no, n0 +1, ... , N-no-1, where no = -(b/ws) INT. The

steady-state waveform, at the sampling instants, can be written as

IN-I sT/N

C( T/N = E (An sin Wnt + Bn COS wnt) (127)
n=O .
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To solve for An and Bn, multiply each side of Eqs. 124 and 125 by

Uz2 - [2 cos wk(T/N)Jz + iJ 1 0 < k < (N-I) (128)

and evaluate for z = 1 Wk(T/N). Since the only terms which carn survive

on the right-hand side occur when n = k, the E will, of course, dis-

appear. Then, if we so choose, the k notation can be changed back to n.

To illustrate,

GT/NGT zN sin bT z2 - ]2 cos ((T/N)] I IN)
A B 2N Nlik(T/, kO

z (2 cos bT)z + 1 k

N-I Anz s Tin wn(T/N)+Bnzhz-cos w ,,(T/N)] lz2_[h2 eQs dk(TIN)]z+].

EAS0 z
2 

-[2 cos wn(T/N)]z+ i 'zbij(T!N) (2

GAT/NGTB Z-N (sit, -bA-T) zN + inzN ( s bT zN(1-"A)T ]i z2 - [2 co k(T/N)]z4 ]I

-(2 cos bT)zNs +1[2 s z=lst)k (T/N)

N-I A nz sin ton(T/N)+ B nz[z -cos w on(T/N)h 20

"- [2 z2-N-2+1~ bszk(TIN)]z+2 (130)2 _O z (- 2 Cos Own(T/N) ]z+ 1 z=I 4(Ok(T/N)

For any n # k, the right-hand side of Eqs. 129 and 130 are identically

zero since

z2 - [2 cos (ok(T/N)lz + 1 - [z - cos wk (T/N)] 2 + [sin )k (T/N)]2

(131)

vanishes when

z = 14w k(T/N) = cos w k(TN) + J sin w k(T/N) (132)
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Specifically, we obtain

[Cos Wk(T/N) + j sin (ok(T/l1) - cos w (T/N)] 2 + [sin a, (T/N)] 2  0
k kk k

(133)

For n = k, the cancellation of the common factor guarantees the survival

of an n = k. term. Factoring out a common z gives

ziAk sin w k(T/N) + Bk[COS W k(T/N) cos w k(T/N) + j sin w k(T/N)I}

(Ak + jBk)z sin wk(T/N) z 1IW k (T/N)

(13L)

Therefore, Eqs. 129 and 130 become

CAN 1, 4 n bT) 1
2

-

/.Sill T
1
N ']/..fl(Ak+L~c) CA(T/N)Lz I lllklN

sy1(-J I-k -J'CO = --"" z2N-(2 cos bT)Z +1 1SW k(T/N) (135)

" C'A s I s bAT)z" + n b ( I -- iTT I -2cos 2;k(T/N)]

1' sin (T /N (Ak4j Bik) 2N--(2 cos bT) zN+ 1 J, =IA~k(T/N)

(136)

AL this point, divide through by z sin wk(T/N) and replace k with n:

A.-/I .' ( N z-f sin bT "2- [2con u (0 (T/N)]zA J
, i( _ (l/' z2'- (2 co s ibr) zN+ I 4 (T/N( (137)

ST / ,.. _ ( i ,n bAT% z7 N • ,, bs.i - . 72 - _[2 cuH c 0 ('F jN)] +_I

A B , (T,/N) s~n z/N) z -(2 cos bl)zN+ 1 iz" W n (T/N)

(138)
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The last tErm on the right-hand side of Eqs. 137 and 138 is indetermin-

a -te (0/0) when z 14wn(T/N). Therefore, applying L'iiopital's rule

first to Eq. 137 (A =0 case),

An+ jBn =GT/NGT ZN-1 sin bT 2z - 2 cos w,(T/N)
A B sin wn(T/N) 2N[z 2N-1 - (cos bT)z- 1J Iz=1j(n(T/N)

(139)

= T/NGT Z Nl sin bT 2[z - COS wn(T/N)]_ (140)
A B sin Iw~(T/N) 2NzN-l(zN -Cos bT) Iz=14Wn(T/N)

An +jBn GTINcGI
Iz-1 wn(T/N)

sin bT[cos wn(T/N) + j sin wn(T/N) -O osWn(T/N)]
X [sin wn(T/N)INj[14wn(T/N)]N - cos bT)j 11

An + j~n T/N;TIAn Bn A BI Z=14UI~(T/N)

(sin ,T)[J sin wn(T/N)]
x -- csbI(142)

(sin wn(T/N)INj[(14w)n(T/N)]N obj

bu t,

[I4wn(T/N)jN -Cos bT = lj(A.nT - Cos bT

=COS WnT + j sin wnT -. c~bT

= Cos [b+(2?rn/T)]T + j sin (b+(21Tn/T)]T! -Cos bT

= cos bT + j sin bT- cos bT

= j sin bT
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There fore,

1 +(T/N;TI (143)

An + j 0n = 4 'A BI z=1wn(T/N)

Next,
GT(R) = CT(zN) , = T (144)

B B

because of the local definition z - esTV/N. Therefore,

GT(7N)I = cT [L4.w,(T/ N)]
B z= 1•sw(T/) B

= G'f(14WIT) - GT(14bT) (145)

ii

That is, take the "T" z-tranaform of GT and evaluate at z = 14bT.

The finite N result for Eq. 137 (A = 0) is then

GT/N z aesT/N
A GTz=es (146)

An + jBn = N - z4wn(T/N) B $z=bT

As N + •, the coefficients of the continuous spectrum are given by

A Ze- (147)

An + jBG - -•1tAsJ%,dbT

The supev'script notation in Eqs. 146 and 147 is for the purpose of

calling out the definition of z being used in the evaluation.

We next treat the indeterminate part of Eq. 138 (the I 1 0 case).

Applying L'Ho(pital's rule co the last term on the right-hand side of

Eq. 138 resultr in
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A0  JB = /NCT ZN4-1(sin bAT)zNl + sin [b(1 - )T}
An+1n A B sin w5(T/N)

' 2[z - cos u0 (T/N)] (148)
X NZN-1FzN -Cos hT] 1z14w0 (T/N)

Evaluating Eq. 148 at z =14u0(T/N) produces

An~ 15 (T/NN) (149)

x inLAT(cos wT +1 sin m~T) +.sin L - A)Tj [ens wý(T/N)+ tsin wri(T/Nq) - co W%5-/N)J
(sin u1n(T/N)]N1[cos wT+j sin s, 5T-cos liT)

Simptifying Eq. 149 gives

T/N TI (sin hAT) esiCf + tni L,(.- A)T jui),wT)(sin hAYr)
!C~~ (3,-'w T/N) N sin bT

. 1/IN GTi sin bT Cos LAT +j sin tnT sin bAT
0
A B N sinl h'

- ¶/IN Cios bAT s±_!in hAT
jAz..14d,~(T/N)N

13' T/NTj

6T/N0GT' jiA CA -BI1ujTN eAs~' (150)
G A 1B! (T/N) Is-iL

Thus, the only new element added is the factor eAsT evaluated at the

input frequency. Since A is generic, we draw the same conclusion for

every other element of (W1*R)T and hence combining Eqs. 146 and 150

gives
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( 2 )T / N z -•e s T / N z • s
(CIWIN izeln zAesT

An + jBn (W 2*ciWJTINI 2  z14wn(TIN) zjýl4wr1T es-jb (151)Sz- l~bT

n2n"" b + = 0,1,...,N-I (152)

As in Eq. 146, letting N + gives the "continuous" result

sT
Art4 -W jBn GW21 (W2*GIWI) T z=lb W* b

T =1)fl4t sj (153)
or z=14nT

In Eqs. 151 and 153 it is important to observe that an option exists

with regard to (W2 ,GIWI)T; it may be evaluated at either i4bT or

i~wnT. However, theue is nu option with regard to W1 , sincc it must be

evaluated at s = jb. Clearly, the most efficient procedure is to

evaluate (W2 ,G 1 W1 )T at z = 14bT and WI* at s = jb, save the result in a
polar format, and then evaluate (CG 2 /N)/ (or NW2/T) the appro-

priate range of n.

It can be appreciated that the results of Section III are contained

in Eqs. 151 and 153, since Section III considers only the special case

of WI1 = 1.0 (a scalar). Also, note that W1 and W2 are symbolic

representations that cani represent either multi-rate or multiple-order

sampling formats (e.g., it is permissible for W2 -- W, etc.). However,

in arriving at the spectrum of the continuous variable, unjformly spaced

time samples, in a T/N time frame, were uned.
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C. A CLOSD-LOOP APPLIC&TION

The ability to cast any multi-rate or multiple-order sampling se-

quence into a switch decomposition format makes the analysis of closed-

loop systems a straightforward task. Consider the system of Fig. 23.

Proceed as in the single-rate case. Since C GIWIET, one must first

solve for ET

ET (WIR)T - (WIG 2 W2 )T(W 2 CG1 W1 )T ET (154)

or

ET = [I + (WIG 2 W2 )Tr(W 2 *CIWI)T]-I(W,*R)T (155)

R E - --

LJ T L-J -LZ.I -LL n .i L-

-- L-1 2 I-*

Figure 23. Closed-Loop System with Switch Decomposition

Theref ore

CT/N = (CIWI)T/N[I + (WIG 2 W2 )T(WaGiWI)T]- (WI,R)T (156)

The coefficients for the steady-state waveform are then

An + jBn [i + (W ,G2We)T(W2,GjW)T l W,T~~~~ ~ S=L)nIz1b s=jb

or z=I*WnT

(157)
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The following numerical example will help clarify the specific

details of Eq. 157. (An alternate solution based or the "two-rate"

theory of Ref. I is contained in Appendix A.) Consider the system cf

Fig. 24.

With reference to Eq.. 157, W1 = W = [1, e-sT/21 and W2  1.0. The

T/N output equation for Fig. 24 is

CT/N = ( 1I M2 W)T/N ET (158)

whe Lre

T = [I + (WG 2 M)T(GCl 2 w)T]-(WR)T (159)

Then

CT/N = (C 1 M12 W)T/N[I + (WC 2 M)T(GIM2W)T]-'(WR)T (160)

Thie steady-state coefficients for Eq. 160 are given by

AT`s2j4 [I (W,2M )T(G 1 M2 W)T]-I zesT (161)

[I + Ti=14bT s=jb

or z l43nT

M2  G6

R E E C cT

Figure 24. Closed--,oop Numerical Example
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where

2n
Wn = b + , n = 0,1,2,...,N-1 (162)

The inverse expression in Eq. 161 is formed using the following

steps (z = esT):

S1-e-T

( 2)T [e-( T e-T/2)z + (e-T/2 e-T)](W*G2 e)T = s(s + 1) }z - e-T

(163)

where

[(s + 1)z s+i ] (164)

and

[-sT/2( - e-sT)IT F- 1 sT/2 esT/2]T
Lm - I -(165)s(s + 1) s s +i

with

TS] ] z 2--J ze-AT (166)

s z Is + a I z - 'a

Applying the advanced z--transform relationships in Eq. 166 to Eq.s. 164

and 165 gi es Eq. 163. Next,

T - e--T/2 Pr-s2 T 1[-T/2 - -T - e-_T/Z
(G1M2W) = S(S + 1) z-e -Te

(167)

66



where

T L
____ = -+ £1+ -sT/!] (168)

S~s +1) ss +1

and

s aeTd
2 I 1 sT/ 2 L -sT/2 / -1+ s2]

-- (S + 1) ! :s +- '+ 3

(169)

Placing Eqs. 168 and 169 in an advanced z-transform format produces

-e-sTl2 + (-I + -sT/2l]" = Z- [-esT/2 + esT+2]T

s S + Ii

(170)

e-sT/2 1 - sT2) + e-sT/2(-, + e-sT/2Ts 1 j = z esT/2 .

CsT/2 I 1 T

s + s +

(171)

E'qx1ation 166 can now be applied directly to Eqs. 170 and 171, resulting

in Eq. 167. Now, assume T = -1n(.81), which gives a set of convenient

numbers when Eqs. 163 and 167 are evaluated. The result is
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S.019

(W*G2 M TIGIM2 W)T z-. I .0 9 .10
z .81 z-.81

."0171 .019 1

1.009z + .0081 I .Olz + .009J
(z - .81)2 (172)

and

Z2-1.62z+.6732 .019
*C;I, 214)T(GI 12 W)T _.009z+.0081 z2-1.1+65

Z2 - 1.62z + .6561 (173)

where

I(z [(z - 81)2 0 1
I [- --1--- 

(174)
0 (z 8)

Taking the inverse of Eq. 173 produces

z 2 -1"61z+'6651 
- -. 019

[I + (WG 2 M)T(GM 2 W)TV-I [-(.009z+.0081) z 2-1.62z+.6732
z2 - 1.61z + .6822

LNj(z) N2()1

N3 (z) N4 (z)J
D(z) (175)
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Substituting Eq. 175 into Eq. 161 gives

Nl(z) N2 (z)]z esT_

1 - esT/2 /][N3(z) N4 (z)]

An + jBn - Ts(s + 1) [I i D(z) z='dbT LebT/2J

(176)

Performing the matrix operations reduces Eq. 176 to Eq. 177.

1-e-sT/ 2  Nl(z)+N2 (z)ejbT/2+N3 (z)e-sT/ 2 +N4 (z)e-sT/2ejbT/2

A BO Ts(s+l) DWz I Sjtj
and z=l1bT

(177)

where

2T n
Wn = b +-- n = O,1,2,...,N-1 (178)

In Eq. 177, Nl(z), N2 (z), N3 (z), N4 (z), N5 (z), and D(z) are evaluated at

i4nT = l4bT and the remaining terms at s = jwn.

In this two-rate, closed-loop example where the input sampling

ii terval is one-half (T/2) the output sampling interval (T), two

separate sets of Bode plots are required to present the magnitude factor

and phase shift information for the entire frequency spectrum. That is,

the fundamental and alias components are still directly read from

individual magnitude and phase plots, but now two separate magnitude

plots and two separate phase plots exist. One set of Bode plots (i.e.,

magnitude plot and its accompanying phase plot) is valid for a specific

range of input excitation frequencies (r = 1 sin bt) and the second set

for an alternate range. In this example, these two frequency ranges are

given by

Ku, 4 b < (K + 1)ms (179)
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where W0 = 21i/T and one set of Bode plots is applicable for even K's (0,

2, 4, 6, etc.) and the other for odd K's (1, 3, 5, 7, etc.). Therefore,

the first set of Bode plots is valid for

0 4 b 'C

2ws < b ' 3wS

4ws 'C b < 5ws (180)

and the second set is used for input excitation frequencies which fall

in the following ranges

's C b ' 2 s

3ws < b ' 4us

5 Cs < b < 6ws (181)

It is seen that the ranges covered by the two sets of Bode plots

alternate along the frequency axis.

ACOUositc magnitude plot for En. 177 is shown in Fig. 25. The

solid curve represents one magnitude plot and the dotted curve the

second. As pointed out, these curves are valid for the input excitation

frequencies defined by Eqs. 180 and 181. Sample printouts are Ohown in

Table 4 for Eq. 177 evaluated at b = 1, 40, and 80 rad/sec. The format

of the printout is magnitude (dB), phase angle (deg), un = b + 21r/T

(rad), and an index number to indicate the aliased component. Figure 25

was generated by evaluating Eq. 177 for a large number of input frequen-

cies, leading to the appearance of a multi-valued Bode plot. However, a

careful check of the spectral components listed in Table 4 will show
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-40 0_

r*b= 1.0

Solid Curve

4 w,< b:< 5wI

_________t__ 1 i- i r.~ -80 1rMed C.urveI I

~<b2 <~ 2ww

5wý (b 6 w,

-140 Ll J 1v I Ai
1.0 10 w (rod/sec) 100 10

Figure 25. Composite Magnit~ude Plot
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TABLE 4. DATA FOR COMPOSITE MAGNITUDE PLOT (FIGURE 25)

b = 1 b = 40 b = 80

Magnitude (dB) -3.300 -39.849 -51.897
Phase (deg) -19.924 -209.290 -150.751
Frequency (rad/sec) 1.000 40.000 30.000
Spectral Component Index 0.000 0.000 0.000

-88.518 -99.387 -107.245
-117.241 60.648 -428.657

30.818 69.818 109.818
1.000 1.000 1.000

-71.690 -55.701 -61.372
-63.879 -210.147 -151.057
-60.635 99.635 139.635

2.000 2.000 2.000

-107.219 -116.112 -114.780

-118.466 60.270 -428.840
90.453 129.453 169.453
3.000 3.000 3.000

-83.587 63.850 -67.550
-64.348 -210.362 -151.180
120.270 159.270 199.270

4.000 4.000 4.000

-116.016 -116.694 -120.018
-119.718 60.130 -428.928

150.088 189.088 229.088
5.000 5.000 5.000

-90.582 -69.374 -72.098

-64.506 -210.460 -151.246
179.905 218.905 258.905

6.000 6.000 6.000

that the various aliased components will alternate between the top and

bottom curves, or they will remain totally on the solid curve or totally

on the dotted curve. To illustrate this, the fundamental and aliased

components are highlighted with a star symbol in Fig. 25 for an input

frequency of b = 1.0. The two magnitude plots in Fig. 25 are shown

separately in Figs. 26 and 27 to further emphasize that two completely

independent magnitude plots exist, each valid for different ranges of

input frequencies.

This multiplicity in Bode plots is directly associated with the

(W R)T term in Eq. 160 and exists for any general closed-loop system
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with high-input/slow-output sampling. For other general multi-rate/

multiple order systems, a single magnitude and phase plot covers the

entire frequency spectrum. It should be emphasized that the (W *R)V recnm

alone does not guarantee multiple Bode plots. In many open-loop and

closed-loop systems the (W R) T term appears and only a single set of

Bode pluts is required (e.g., Case IV example in Subsection D). Thus,

the multiplicity in Bode plots is directly tied to closed-loop systems

with high-inplt/slow-output samppling. For these systems, the properties

of the multiple Bode plots are then determined by the (W R)T term.

In Eq. 161 (or Eq. 177), those terms that are evaluated at z = is4n T

and s = jn are inherently generic with respect to the input freqtency.

For example, given a sampling frenuency of 's = 2TT/T = 10.0 rad/sec and

an input frequency of b = 1.0 rad/sec, these terms contribute to the

follow.'ng fundamental and aliased components:

Fundamental: 1.0 rad/sec

1st Alias: 11.0 rad/sec

2nd Alias: 21.0 rad/sec

3rd Alias: 31.0 rad/sec

nth Alias: b + 21in/T rad/sec

i'bw, for b = 11.0 rad/sec, contributions to the following frcqouncy

components are obtained:

Fundamental: 11.0 rad/sec

ist Alias: 21.0 rad/su.c

2nd Alias: 31.0 rad/sec

3rd Alias: 41.0 rad/scc

uIth Allas: 1, 4- 2rn/T rad/sec
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I t Is -,i scu thalt the cutitribiiitinns to tlhu 1st, 2nd, 3rd, etc.. aliased

C )flpiieitI or b 1 .0) Iad /.ýcC ident ical ly mnatchi the cojt riblut 1003 to tile

fuindaiimenuli and 1st , 2nd , 3r, etLc.. , al1lasud comsponenat for b =11.0. We

coil d thenl replace w0 = i) ± 2wnr/T wvitll simply w n = b to obtain the fun-

cdaino :iia rind nii jised compyonents for the Bodc plot If it were not for the

(w' w) term11 ill Eq . 160 - Indeed, a± single set of generic Bode plots can

be cons*t riLe ed for aniy general i multi-rate/mo) t ip]ie-order ci osed-loop

viste , except t rose, empi nying faszt-input / slow--ou tput sampl Ing.

Th1e (W R1) L(tern, uinli ke the remaining terms in Eq. 160), most he

eva luiatoil at s = jb (anld notý S = Jul ) rherefore, this frequency re-
spous em ssllyafncino thie input frequency b ai)d not a

ftie t ion of the input phis 0) 105e( component. The mnu) tipie Bode plo~ts

a rc a cons epic ce of' this si ngulat dependence on the inputL f requlency b

and( e~ re so. i log cyclic-or periodic no tore of the e h 1/2 clen in

WA I I(182)

1-or hits exmlthis pe(r1rodinity is at Lthe I i~ij,iit saligliny, frequenicy

,.~b -2 n1

arid the cuoiP. ricit .0( firoma te (W R) 1  -il s heou rcpeatsý itcll for' iiipiit

li ti

'lots ' Ccii Ihe lichiuv I I shiows up d i ru,':t ly fo theli comlpoliteC magnitLude plot

ha 1¼ý ;. 2,5 ei wre: t ie I oindanu'iitralI I ruqticnucy ira-ng' cove ,red I O tlie comnh i-

1nit lI A ho L Iti )Pudi itt,! eqii ils tli'e hitiiit namjlp Ig I Iy reqIiieroey , 2-n -

r9u, rId/sc- JiuscyiV, cacti W,(,du pluot colititatos 01 laseul CumlIpiielt-b
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which are a functlon of the output and not the input sampling frequency

(i.e., . + 2u/T, b + 41/T, b + 61T/T, etc.).

D.. flaERAL F-SaPUrt-

Some general z- usions can be formed by extending the two-rate

vector switch decomposition example from the previous subsection. The

final expression (Eq. 161) for the spectral coefficients is repealed

below for easy reference.

SzýesT
(j1M 2W f 1

Al + jB 1  T [1 + (W*G 2 M J 1 2 W)TJ •InT W, s-j (185)

or z-l4bT

Vector switch decomposition modeling for a different input sampling

interval only requires alterations to the W and W vectors. This change

does not disturb thore terms evaluated at s Jwn and z = l4wnT. It is

known that the 4 term evaluated at S = jb dictates the structure. of the

frequency response specrrum and the Bode diagrams. As was shown, for aa

input sampling frequency that is twice the output sampling frequency,

two separate sets of Bode plots. are required as a result of the ejbT/2

element in the W, jsjh term. If this is extended to an input, sampling

interval of T/3, the -W vector will contain the following elementte:

II
1 1 I

* " sT/3V (186)

e s 2 /3

Both ejbT/ 3 and jb'T2/ 3 elements now appear in the spectral coefficient

expression. The ejbT/3 factor is periodic in b - 2un/(T/3) and ejbT2/3

in b - 2sn/(2T/3). this periodicity recults in not two but three sepa--

rate sQts of Bode pl.tu to cover the entire frequency response spec-

trut. Again, as in the 112 case, all alias components will be directly

related to multiples of the output saipling frequency, w6 21/T (i.e.,
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b + 2r/T, h + 4ir/T, b + 6-a/T, etc.). The individual range of input

frequencies that are applicable to these three sets of Bode plots is

given by:

(k)ws 4 b 4 (k + 1)ws

(k + Ilu)s C h C Ikk + 3/2)Ws (187)

(IC -, ./2)ws C b 4 (k + 3)w 5

Ws = 2T;/T , k = 0,3,6,9,etc.

Thie fundamental frequency range covered by all three Bode plots again

occurs at the input sampling frequency, 3ws.

Further esrenslons of this axample provide the following general

conclusions for fast-input/slow-output sampled closed-loop systems:

J The number of separate sets of Bode plots re-
qiired to display the entire frequency soectrum

is equal tc the number of elements in the W Is1j
switch dfcornposition modeling vector. sjb

0 The frequency range that is applicable to each

"Bode plot is determined by the periodicity of the
SIjb elements.

0 Tie alias components in all Bode plots are a

direct function of the oitput sampling frequency,
U- r/? (i.e., b' + ' b -+ 2ws, b + 3w, etc.).

% The fuuidamuzial freqiiency range covered by the

combination of Bode plots is equal to the input
sampiing freqceocy.

In addition to the3e general conclusIons, the fast-input/slow-output

sampling scheme gives rise to new frequency response identities. These

new identities, alotig with those presented in Ret. 1, allow the frequen-

cy response expressior (A,, + JBn) to be written directly from inspection

of each rerm iui the CT/N ovtput equation. Any general multi-rate/

multiple-order samilfirg architecture can be band.led with this complete

set of identities. This includes vector switch decomposition modeling

77

=: - .Z " .- tn. a* .e • -



of multi-rate/multiple-order systems, computational delays, and nonsvo-

chronous sampling.

For the two-rate example in the previous subsection (Fig. 24), the

CTiN output equation using multi-rate theory (Eq. A-6), and the CT/N

equation using vector switch decomposition modeling (Eq. 160) follows:

:T/N (ciM 2 )TIN pI 2 
- (C, 2j)T/N (G2•)'/ 2

x R+ i(GLM' 2 ( /2]TI-CliOT/2)T (188)

CT/N = (C 1M2w)TIN[ I + (W 2fl)T(Gl 1 2 W)Tyl (WN )T (189)

Tn the CT/N equation arrived at usinig multi-rate theory (11.q. 188), the

first term on the right-hand side introduces spectral components at

= b +- 2un/(T/2), n = 1, 2, ... , aod the second term iritroducs spec-

tral components at wk b + 2¶k/T, k = 0, 1, 2, .... 'Te unique factor

in this expression is (Gc 1 2 R T2)T whicl corresponds to the (W R)T factor

in the CT/N equation based on vecktor ,wiLch decomposiLion modeling (Eq,

189). These two factors directly determine the multiple Bode plot

structure., The new frequency response identities for these two factors

are

T/2NT z z;'e s T I M'

CrMN2 1 0/2T (C'IT/M)T (z) T/N (19o)

(w.AR)T - W.j (191)

All the remaining terms and factors in the CT/N equation can be

handled by the following identities from Ref. 1.
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F'Iflltt) N

1t)/ I(; j 0 sT/NZ
(T 1 1N 7 Iz=14w,(T/N) (192)

A A Iz = 4bT(13

C~ kT/Ilk z) 7 tesT/ Ik

K K ~~z=14wfl(T/Nlk)(14

+ jB~ =TN (M' 11z ze44esT/N) 7iJ~ z4Tj

!esT/U

~k K/ ~ zjT (195)

(clo/N -.- (m~s)(196)

T;

A A?) (197)

k k l~z=14w1 1 (T/Mk)(18

A1 1 + P (GM)(s)i
T A 1 , = 4 b T r

<sT/Ilk 1
x jlC'}zJ1(199)

IZ= 14%(t), T/ 111k

7!)



n T
n = no, no + 1, ... 0, 1, 2, .. , N- no I

no - -(b/w,) a t u

The notation used in these identities indicates the definition of
"T' to he used in calculating each z-transform expression and the subse-

quent evaluation performed to cdlculate coefficients for the fundamental

and alias terms in the output waveform (An + JBi). That is:

* Take the T/N z-transform of (GM) and evaluate at

z = 1-Wn (T/N).

* Take the T z-transform of GA and evaluate at
z = l4bT.

* Take the T/tM z--transform of each Gk term and
evaluate at z = 14w T(T/Mk).

For the (GM) term, calculate the normal z-transform expression and

replace each "T" in this expression with "T/N." Follow the same proce-

dure for GA and Gk with "T" replaced with "T/Mk" in the resulting

z-transform cxpression for the Gk terms. With (GM), GA, and Gk in

z-transform form, each term is then individually evaluated at the appro-

priate value of "a" as indicated by the notation.

Example

(200)

CT/100 CM)T/ 00T gT/10 GT/20 cT/50 RT
cTIO = (M)/IOA 1. 2 3

• S T/1. 00 ,• ,' ,/,
A -ts (G/)T/i00(O GT(z) GT/IO(z)

nNnz= 14=G(TN)T/00) 1 z-- 4bT z=14wn(T/i.0)

2.AesT!20 A s T/5('
GT2/20(,) GGT/50(2)

2 z=14.un(T/20) z = ]i-wn (T/50)

(201)
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b + (2un/T)

n no0 , n--l, ... , 1, 12,..., N-n 0-i.

no =-(bIws) NT

It is apparent that once the CT/N expression has been determined tor

the system, simple substitution produces the exact frequency response

expression for either the finite N case or the limiting case of N t

Using this expression, the coefficients (A0 + 2Bn) for the fundamental

and its aliases present in te output waveform can then be determined.

A summary of the steps required follows:

* Obtain the CT/N output equation using block
diagram/signal flow algebra.

* Apply the identities outlined in this subsection
to each termn in CT/N to obtain the frequency
response expression ', + jBn.

* Calculate the individual Z-titamuforms using toe

appropriate definition of z.

a Evaluate each tent, in the AV, + jBn expression at

appropriate values of z and s.

E. APPLICATION TO SIMULATION ERROR ANALYSIS

There is a natural extension of the previous i.esults wiiich makes the

switch decomposition/frequency response tech.nique ideal for the error

S...lys. s of simuLations (either simulations of continuous systems or the

simulation of continuous plants under the influence of direct digital

control). One may obtain a clearer understandin.g of this statement by

considering the four diagrams of Fig. 78.

The situatiorn described by Case I in Fig. 28 assumes a controlled

element (1/s2) unciex the influence of a continuous feedback controller

wich an (idealized) compensation network 2(s + 1) in the fcrward pith.

Case Ii depicts the same controlled eleraent under the influence of a

discrete feedback controller which smooths the output of the digital
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CASE I
G2 Gm

R -H -C

42z-40

GM 0

_/2(si-I) 477]27-!~T
ZO H

T 0. 5 .. .. / __ _

7 ~ ~ Z 0- 4 Hz-
T

CASE H 42Xz -40 4 ( Z-I2

TTT TL TT -- _• ""2(s _I) -- T

Tustin Storage

Register

T = 05 L__._
T

CASE JZY 42z-40 ( z__

z M3 16 (z-0)2 M
R.1/3 T/,2 T/2

X2  -S,/ xX 4 , XQ Fe7
r/ 3 /3 s T/2 JT2 LSj

T 5 z e- " Storage 2 =e-s/2 Stocrge
T/ 1 OG5 G2  Register Tustii, Register

T/2=.05 :.075T/ 3 =.05 [/ u

T/3

F16ure 28. . Simulation Cas,-! Study
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computer with a ZOR (passing on a "staircased" sign;l to the control

point). The discretized version of 2(s + 1) was computed, using the

first back difference algorithm resulting in the model (42z- 40)/z (at

a sampling rate of 20 l1z).

Case TILL depicts a simulation of Case II (or I) wherein the plant,

I/s2, is modeled using a "substitution-for-s" rule (Tustin transform).

The output variable C is modeled as the output of a storage register

(ZOOl).

Finally, Case IV depicts a common situation wherein one part of a

simulation is coded for one computer while another part is coded on a

second computer. Typically, the computers are working in slightly dif-

ferent frametimes and therefore will, on occasion, pass "old data" back

and forth. In this example it is assumed that the compensation is

modeled in a 0.05 sec time frame, while the plant is modeled in a 0.075

sec time frame. Data transfer between the two computers is via appro-

priate buffer registers, modeled as a ZOH in a T/3 time frame (M3) and a

ZO11 it, a T/2 time frame (M

This completes the problem description; we may now write the appro-

priate equations for each case and discuss the analytical difficulties.

Case 1 is straightforward since

C(s) = [I + CIC 2 ]-1 ClC 2 R (202)

Case 11 appears straightforward but does present a contradiction in the

output equation

cTr It + (G l.)'r C•II(GIM)'r (,"URT 0 )
G" (203)c

Th1t is,

T L-e-S 4 T T2 (z+1) (204)

•(' = s s2 - 2 (z 1)2
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is readily computed using a transform table. However, it was not the

intent of the designer, who used a substitution technique to model

2(s + 1) as (42z - 40)/z, to compute

GT  = [2(s + I)]T (205)
2

using the z-transform. Indeed, what does [s]T mean? Clearly, the.

intent was to assign GT = (42z - 40)/z, which is legitimate if one

interprets z- as a delay operator.

This difficulty surfaces again in Case III since

CT = [I + GTGT]-j GTGTRT (206)1 2 1 2

after taking due note that MT = 1.

Now it is n,'cessary to interpret both CT and GT as given functions
1 2

of z radlier than z-cranstorm operations. For example, assign (via the

Tustin transform)

T2 (z + i) 2  (207)

1 4 (z-i) 2

rather than (via the z-transform)

I s (z- - 1)2

Difficulties in the "assignment" procedure also surface when we

write the output equation for Case IV (see Fig. 29).
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2(s I TE e

ýW-I- T -

Figure 29. Case IV, Switch Decomposition Model

C (M2 W2 )[I + (W2CGIw 2 )T(W 2 *M3 W3 )T(W 3 *G2 W3 )T(W 3 *M2 W2 )T]-

x (W2,*GIW2 )T(W2*M 3 W3 )T(W 3*G 2 W3 )T(W 3*R)T (209)

where

W2= I, e-sT/2] , W3 = [1, -sT/3, e-sT2/3] (210)

The meaning of some terms in Eq. 209 are clear; others are not. For

example, a straightforward computation yields (see Appendix B)

L 0 ; (W 2 ,M 3 W3 )T = (211)
0 1 0

However, the meaning of (W3 ,C 2 W3)T or (W2,GjW2)T is not clear. When the

desigrer specified C2 = (42z - 40)/z, he intended (for a T time frame)

the recursion relationship

X2 (n) 42(Rn - Cn) - 40(Rai Cn_) (212)
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In a like manner, the Tustin substitution for i/s2 was meant to yield

X4 (n) 2X 4 (n - 1) - X4 (n - 2) + T2 + 2K3( n -) + Xj(n - 2)]

(213)

Clearly, the information available in Case IV is

/ 42z 40 T/3 = 0.05 , z esT/ (2t4)

and

/2 =T2 (z + 1)2
=, T/2 =0.075 , z esT/2 215

1 16 (z - 1)2

Using only the given computer code, how does one compute (W3 G2 W3 ) 1 and

(W2G2 ) T ? This problem is treated in the next subsection. In order

to complete the analysis of the present problem, the reader is asked to

temporarily accept the assignments

42 0 -40/z

(W3 ,G 2 W3 )T = -40 42 0 , z = es T  (216)

0 -40 42

a nd

(z' + 6z + 1) (T 2 /4)(z-4- 1)/z

T2Z(z + 1) T2 (Z2 + 6z + 1)
(WZ*CIW 2 )T (z - i) 2  (217)

With these assignments, all terms in Eq. 209 are defined and the Bode

plots descriptive of Cases I-IV can be computed. The results (magnitude

plote only) are shown in Figs. 30 through 35.
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Inspection ae Fig. 30 discloses no surprises. The digitally con-

trolled system is a reasonably faithful reproduction of the analog

system until the folding frequency (approximately equal to 62.8 rad/sec)

is passed. Notice that in the discretely controlled system, minimum

response points in the Bode plot (notches) occur at multiples of sam-

pling frequency (approximately equal to 125.66 rad/see).

The comparison of the single-rate simulation against the baseline

design exhibits fidelity over a shorter low-frequency range (Fig. 31).

Of particular importance is that the aliased bands exhibit a much higher

amplitude response than did the aliased bands of the digitally con-

trolled system (Case 11). Moreover, the "notches" now occir at multi-

ples of the folding frequency rather than the sampling frequency. In

addition, there are very sharp notches which occur close to odd multi-

ples of the folding frequency; these are a consequence of the zeros of

the Tustin transform introduced by (z + 1)2. A direct comparison be-

tween Cases Ii mnd III is given in Fig. 32.

Fig,,re 33 compares the two independent processor case (Case IV)

against the continuous baseline design. Large, sharp resonant peaks

have been introduced in the aliased bands and, in addition, there is a

significant overshoot in the first fold. A comparison between the two

rate simulation (Case IV) and the digitally controlled continuous system

(Case II) is given in Fig. 34. Figure 35 (a very "busy" figure) com-

pares all the cases.

There are significant differences in the spectral conLent of the

four cases which would be hidden if one only looked at the sampled spec-

Lrum (that is, looked only at the frequency content from zero to the

first folding frequency). Even in the first fold, there is a signifi-

cant difference in the Bode plot of the continuous case and the two-rate

simulation; the reason for the added overshoot in the two-rate simula-

tion will be discussed ii the next subsection. After this, we return to

the theoretical issue of computing such terms as (%3,G 9 W3 )T when only a

CG?73 assignment in z has been given (or, equivalently, the recursion

equation is given).
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F. AN IMPORTANT ADCORITHM

(if fundamental concern is the evaluation of terms such as (1 CW)T

when G is specified only in terms of software statements (i.e., given as

a function of z). As a first step, consider how one might evaluate the

system of Fig. 36. Asq indicated, it is permissible to insert

[ Cy ,cT/M R - CT/M

T/N L_..JT/M T/N T/MN T/M

Figure 36. A Phantom Sampler Formulation of a

T/N, T/M Sampling Format

a phantom sampler between G and the T/M sampler since T/MN and T/M are

integerly related. Thus,

CTIM = [CRT/N]T/i - CGT/MN RT/N)T/M (218)

M and N are integers.

To compute the entries of Eq. 218 one may:

1) Compute R by table lookup.

2) Replace T by T/N.

3) Replace z (in R) with zM.

4) Compute G by table lookup.

5) Replace T with T/MN.

6) z remains the same (in C).

7) Compute CT/1 using Eq. 219.

CT/M = 2 G(p) R(PM) z (219)

27 r z-p P1

Equation 219 is mechanized in a digital computer program (TXCONV) which

is discussed in Volume II.
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For example, let

= esT/6 , M = 3 , N 2 (220)

1 z
G , T/6 (221)

s + 2 -T/3
z-e

R , RT/2 (222)s 4- 1 'z3_ eT72(22

so that

cTI 3  1 ip 4z
27j J(p e-T/3)(p3 - eT/2)(z _ p2 ) p

f2' f(peT/3 ) (peT/
6 )(p 2 +eT/ 6 p+e_ 2 T/ 6 )(z p 2 ) dp

r res+ e + resSp=e-T/3 ip=e-T/6 +"I_(e_-T/6)/2j-/(32

"+ reS I p=_(efT/6/2)_jeT/6(/3/2 (223)

Thus, there are tour residues to evaluate. Relegating the numerical

details to Appendix C, we proceed directly to the final result,

2 ( z 2 +e-5TiZ6 ) = esT/3 (224)
(z-e-C'T/3)(z-e-T/3)[z2+e-T/3z+e-2T/3)

and observe that the T/2, T/3 sampling format has produced additional

lightly damped modes in the output response. The reality of the addi-

tional modes can be better appreciated by first plotting the continuous

variable C(t) and then picking off the T/3 sample points. This is done

in Fig. 37. Joining the sample points with a smooth curve emphasizes

the lightly damped nature of the response. This effect was also present

in the two-rate simulation analysis of the previous subsection (recall

the additional "overshoot" in the first fold of Fig. 33).
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G. COMPUTATION OF (W GW)T, GT/N GIVEN

With the aid of Eq. 218, we are in a position to evaluate configura-

tioes such as those of Fig. 38 (the vector switch decomposition equiva-

lent is shown in Fig. 39).

R G1  T/ M G
T/3 -/ 3 - T/2 2T//

M3= _CsT3 M T/2
M s ' Ma- s

Figure 38. Example Two-Rate Open-Loop System

W3 z I e-T1I e-111TdI 2 -,/

Figure 39. Switch Decomposition Formulation for Fig. 38

From Fig. 39,

C = M2W 2 (W2 ,G 2 W2 ) T (W2 *M3 W3 )T(W 3 ,CIW 3 )T (W3 .R)T (225)

As noted previously, the evaluation of terms such is (W2 , 11j" 3 ) T is

routine (Appendix B); our concern is with terms like (W3 ,G 1W3 )T when

GT/3 is given as a software specification (e.g., computer algorithm).
1

Focusing n (W3 GW 3 )T we find
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TS1

(' 3,(,W 3 G = s"T/3 C1 l 1 -sT/3 e-2sT/31

e2sT/3

e-sT/3 e-2sT/3

' eT/3 I e-sT/3 (226)

K2sT/3 esT/3

T

1 /-sT le2sT/31 e-sT1esT/3}

/-\

(W3,GIW3)T C1 /\sT/31 I 1,s le 2s T/31 (227)

esT. 31 esTl3111

. - -., . -.. ,... "

Observe the super-diagonal terms. They are simply appropriate sub-

diagonal terms multiplied by e-sT. Indeed, it is only necessary to

compute the first column entries in order to completely determine

(W3 ,GIW 3 )T.

Next, observe the problem statement stipulates G''/3, perhaps defined

through a substitution rule. If esT/ 3 is defined as z we have, using

Eq. 218,
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T
Jf/ 3  z- 3(z 2 G/ 3 ) z- 3 (zcf/ 3)

cT/7 T/3

(w3,CIw 3 )T = 1/3 1T/3 z- 3 (z 2 Gc/ 3 ) z = eST/3

7 20 T/3 zcT/3 c.T/ 3  (228)
1 1 1

Although each term in Eq. 228 can be evaluated, using Eq. 219, only the

first column entries need be computed (i.e., the three entries of column

one are sufficient to define all nine entries).

To summarize,

(W3,GIW3) T  (W,-*W3G W3 (229)

For exampie, recall the GT/ 3 transfer function from th- eimulation exam-I

ple (Case IV) had the form

f! 3 = a/ z = esT/3 (230)

One must tharefore compute

(aoz+ a1 ý (z(aoz + aj) yr (z2(aoz + ai) VS• / ' • 7 / (231)

in order to define the 3 x 3 matrix (W3 CG1 W3 )T. To illustrate,

(aOz+ al)T= I f a0p + al -z dp

d ((aoo +ai)z) a 0  (232)

9z - p3 p=

99



(a0 z + ajT 
I- (aop + ai)z

2woJ fj p(z - p3)

(a0 p + aj)z
3  al (233)z - p IP=o

( (asp + al)z
[(z)(a 0 z + al)]r - 2 a- + _.p) dp 0 (234)

(no poles enclosed). Therefore,

ao 0 al/z

(W 3 *, 2 W3 )r = a a0 0 z =e (235)

0 al a0

Setting a 0 = 42, a, = -40 verifies Eq. 216 of the previous subsection.

The other assignment made was

L(T2/16)(z 2 + 6z + 1) [(T2/4)(z +11/

(T 2 /4)[i,(z + 1)] (T 2 /16)(z 2 + 6z + 1)

(W2GIW2) (z - 1)2 (236)
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given

T2  (z + 1)2 sT/2 (237)

T 16 (z - 1)2  e

To verify this, write 1
+= 2(z- [ }

(238)

The first term of column one is

T2 (z + 1 ) 2 )T 1 T2 (p-l) 2  z =P res + res

(t6(z 1)2S 2irj J 6 (p-i) 2  z-p 2  P p-- IpW

T2  T2  d (p+1) 2z T 2  8~ z ]
16 - 16 dp P(z-P 2 ) p=l 16 (z-1) 2

, 2  (z 2 + 6z + 1) z = sT (239)

The second term of the first column is easier to compute:

I T2 p(p + 1)2 z dp res
2-• -16  (p 1- )2 (z - p 2 ) p p=l

L

T2 d z(p + 1)2

= 16- dp (z - p2) p=i

'T2 z(z + 1) (240)

4 (z- 1)2 i

to-



The only remaining terms are the 2,2 term (which is the same as the 1,1

term) and the 1,2 term. The 1,2 term is the product of z with the 2,1

term. Thus, we verify Eq. 236 of this subsection and Eq. 217 of the

previous subsection.

H. SECTION SUMMARY

Important extensions to the frequency response concept for single-

rate systems have been given. These extensions make it possible to

investigate the spectral content of the continuous variables of multi-

rate and/or multiple-order configured systems. In addition, an impor-

tant relationship was deduced which makes it feasible to apply the

switch decomposition/frequency response technique to the error analysis

of simulations of continuous systems and/or discretely controlled con-

tinuous systems. An illustrative example was used to demonstrate the

significant spectral differences that occur when a closed-loop system

(either an Analog or digital controller) is compared with an all-digital

simulation of the closed-loop system. The example also treated, as a

particular case, the problems encountered when a simulation software is

put up on two different (independent) computers, each working in a

slightly different frame time.

At this juncture, the important spectral analysis tools have been

developed, and we return (in the next section) to the study of the

multiple-order vector concept.
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SECTION V

A PSEUDO MEASURMKEKT EXERCI$SE

The pseudo measurement approach achieves certain well-defined goals,

as demonstrated in Section II. This section addreoses the important

issue of whether or not the gains required will be reasonable when plant

dynamics typical of modern aircraft are used.

To provide a digital controller baseline for the numerical ranges

involved, we first "emulate" an analog controller for the YF-16. Next,

the pseudo measurement approach provides alternate loops for the basic

airframe. The numerical range of the compensation can then be meaning-

fully evaluated, though the intent is not to force the pseudo measurej

ment design to "copy" the emulated baseline controller. A basic frame

time of T - 0.04 sec (25 Hz) is used throughout.

A. ANALOG CONTROLLER -- YF-16

An analog flight controller for the longitudinal YF-16 is given in

Fig. 40 (M = 0.,6, h = -30,000 ft). This figure (and the transfer func-

tions for the aircraft -model) were developed using data from Ref. 5.

A listing of transfer functions for this flight condition can be

found in Appendix D.

A digital controller configuration, using a ZOH together with com-

pensation defined by the Tustin transform, is shown in Fig. 41.

For frequency response purposes, note for example

a = GIM) 26T (241)

where

STNe T + T T T+ e 1 TT

e I + G3i--6 GlM + GGIM + 020 GIM TT% G) 02

= CAR (242)
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That is, the coefficients for the frequency response components are

defined (for a):

A + jB 1  (G2) (z)1 (243)
IM SjWn z~l enT

There is a need to know the Tustin transform of such elements as G2T,

T T
G3 , G4 , etc. A significant computational burden can be neatly side-

stepped at this point by noting that the bilinear w'-transformation

applied to a z-domain transfer function (which itself was derived using

the Tustin transform) yields the same form as the s-domain function.

For example, the compensation network

-1.2s(s + 5) - -1.2w'(w' + 5) (244)

(s + 1)(s + 15) (w' + 1)(w' + 15)

-10 => w" 0etc. (245)s + I0 W, + 0 '

By working in w', the computational burden imposed by poles and zeros

very close to the unit circle is avoided. Of course, Eq. 243 must be

modified to indicate the dependence on w' rather than z:

An + jB - GM (GG (246)
e s--j w'=J(2!T) tan (n(T/2)

In addition, the transfer functions [(N6e/D)GIM] T, etc., which

define the effects of the ZOH on the open-loop plant must be tabulated.

These are also listed in Appendix D.
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B. FREQUENCY RESPONSE

Using Eqs. 243 and 246, the frequency response of the continuous

controller can be contrasted against the discrete controller results

(see Fig. 42) for the a component of the state vector. The magnitude

plot for the discrete controller is a good replica out to about 70 rad/

sec; however, the phase angle plots begin to deviate much earlier (about

7 rad/sec). These results are typical of systems designed via the

emulation approach.

40 - 200

Phase T=.04
20 - ------- -- ---------- 150

0 100
I INII

I I
_ __ _I I _ _ _

-20 50

R5-0 -•" .... Amplitude f h---
Continuous A - cntinhou4 -E I ,C \ - ontinuous

-60 .....-. .50

-80 -. .. . . -00

- 10 0 . . . . . . . . ' -. 15 0

0.1 1.0 10 w (rad/sec) 100 1000

Figure 42. Bode Plot, Analog Compared with
Emulated Controller
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C. A COMENT ON A SIMULATION ARTIFACT

Suppose the system of Fig. 41 is simulated in a particular manner.

Specifically, the compensation is Tustin transformed, the aircraft is

simrlated on an analog computer, but a discrete model of the actuator is

used (Tustin transformed). The Bode plot for the a response (Fig. 43)

discloses additional "notches" (compare with Fig. 42) at odd multiples

of the folding frequency (62.83 rad/sec). These additional notches are

introduced as a consequence of the algorithm used to form the actuator

model. That is, the Tustin transform of

20 (z + 1)
20 => (2/T) + 20

s + 20 + 20 - (2/T) (247)
20 + (2/T)

_ -_____ T=.04

20 10 0.:__,

0 50

9 -0_Conlinous -50
_ a ,I I..... . . ... .. 5

aa

E

-60 1 ------ 100

-80 -- - 50_ _

AmplitudeI'20d

-100 ---- 2--00---

-120 --- 
-250___

0.1 .0 10 100 1000
a, (rod/sec)

Figure 43. Simulation of Actuator via Tustin Transform
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introduces, because of the (z + 1) numerator, nulls at odd multiples of

r/T. This points up a general result: low-frequency checks on computa-

tional algorithms (pexhaps with the aid of the "discrete" frequency

response) overlook nulls introduced in the higher folds.

D. THE PSEUDO MEMUREMENT DESIGN

Assume the availability of only an angle of attack (a) measurement.

A set of loops around the airframe (ignoring the washout network of the

baseline configuration) is shown in Fig. 44. The Kf feedforward gain is

used, in the absence of the washout, to set the steady-state gain.

First, survey the w'-plane transfer functions associated with the time-

M G G

T

T T

Figure 44. Alternate Configuration

advanced elements of (WGGIM) T (these are listed in Appendix D). This

listing places in clear view the w'-plane property of generating trans-

fer functions where the order of the numerator and denominator are

equal. For example, the transfer function for a time advance of 0.5T is

given in Eq. 248.

G.5= (.3672x10-3)[(w'+.0083)2+(.07455)21(w'+47"34)(w'-61.72)(w'+130.5)
(w'-1.137)[(w' + .009)2+(-.077)2](w" + 2.07)(w' + 19)

(248)
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The expected result of having the phugoid cancel in the a-related

transfer functions, for a zero time advance, is seen to persist for non-

zero time advances as well. The greatest effect, as A varies, appears

in the high-frequency modes.

Comparing, for example, the transfer function for A = 0.2 and

A = 0.8 exposes what appears to be an interesting general trend

(Eq. 249). That is, the numerator polynomials have essentially the same

coefficients up to the w' 3 term, which suggests subtracting the two sig-

nals [e'2sT(N1e/DJGIM]T and [e.8sT(N6 /D)GIM]T to form an effectivena6e ef e t v

transfer function with a free w' (see Fig. 45).

(.8525x10-7) (w'+.0O8) 2 +(.07455) 21(w'-51.82)(w'+50.31)(w'+6.3x10
7 )

C.2  D

.8525×10- 7 w' 5 +.5372x10l-w' 4 -. 08056s 3 -140.1w' 2 -2.242w'-.7873
D

(249a)

. (.462910- 3 )[(w'+008) 2 +(.07455) 21(w'+47.79)(w'+68.83)(w'-91.98)
D

.4629x10- 3 w' 5 +.01l41w' 4 -3.442w' 3 -140.1w' 2 -2.261w'-.7873
D (249b)

From Fig. 45,

UT= t I+KTKT(GG M)T+KTK~z-l['e-(CGr M) T..e.8sTGC M)T]I['KTRT (250)

The presence of z-1  premultiplying the pseudo differentiator term

requires the modification of the G.2 and G 8 transfer functions by

z-1 - (-w' + 50)/(w" + 50) since the synthesis is being performed in w"

rather than the z-domain,
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M K

TT

Figure 45. A Pseudo Differentiation Configuration

Since the open-loop polynomial is third order (phgonid essentially

cancels), we may attempt a first cut at a design by using the simplified

expression for A(w'), the closed-loop characteristic equation:

A(w') W"3 + 19.933w' 2 + 15.379w' - 44.598

+ KTKT(1.039)w' - KT(140.048)
I f I f

"+ KTKT(32.956)w' (251)+ 2 f•

Using (w' + 3)2 + (2)2 as a goal for the closed-loop short period then

produces, after a short root locus exercise, the gains

KTKT = -1.62
"I f

(252)

KTKT = 2.52 j:

21
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Using these gains as a guide, the exact equation for A(w'),

A(w') = DII + KfK{(GG 1 M)T + KKI (-,w'+50) [e.2sTGCMT - (e'8sTC )

(253)

is used to fine tune thie gains. This results in

KTKT = -1.5I f

(254)

KTKT - 2.22f

with (ignoring the phugoid)

Aw = 1.01062083w' 3 + 17.89902448w' 2 + 86.32467180w' + 165.4746084

" 1.01[(w' + 3.086)2 + (2.159) 2 ](w, + 11.537) (255)

The design appears to be reasonably insensitive to gain variations

(see Eqs. 256-258):

T T
K1Kf = -0.7

6(w') = [(w' + 1.36)2 + (1.2) 2 ](w, + 16.2) , (256)

lk2Nf = i.0

TT
Aiw') e(w' + 1.003)2 + (1.45) 2 ](w' + 17.2) , 0.7 (257)

T T
K2Kf=0.

T T

KjKf _ -3.0

Aw') = [(w' + 6.16)2 + (8.74) 2 ](w' + 3.214) , (258)
T T :

K2Kf 4.4

W44
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The gains used are comparable in magnitude to those in the baseline

design (refer to Fig. 41). The (v') characteristic equation for the

configuration of Fig. 41 is Ac:

Ac - [(w- + 2.154)2 + (3.503) 2 ][(w- + .5)2 + (.303) 2 ](w- + .00172)

x (w" + 10.7)[(w- + 14.12)2 + (14.48) 2 ](w- + 13.55) (259)

The design which uses q and An feedback has introduced additional damp-

ing in the phugoid term, which a feedback alone cannot do. Again, no

attempt to "copy" the baseline design was made; the sole objective was

to establish feasibility and determine if reasonable gains were re-

quired. It appears that the concept is sound and warrants further

investigation. Further, the ability to generate a "pseudo differentia-

tor" by differencing time delay components of a signal is interesting in

itself.

The Bode plot of Fig. 46 was generated on the assuTption of a sinu-

soidal input for R, (see Fig. 45).

K. SECUIN SIDOARY

The pseudo measurement controller, which gives closed-loop dynamics

similar to an emulated baseline design, was shown to be feasible using

gains of reasonable magnitude. Moreover, by differencing two time

delayed signals, it was possible to generate a new transfer function

containing a free w' in the numerator, making it a relatively simple

task to independently control two coefficients in the closed-loop char-

acteristic equation.

As an aside, a simulation artifact introduced in the higher folds,

as a consequence of using the Tustin transform, was pointed out.
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SECTION VI

SUMMAKY AND CONCLUSIONS

The ability of the digital computer to perform a variety of unusual

operations on input data lends credence to the idea of achieving closed-

loop systems with unusual qttributes. This is the key point of the

present study where the logic of the computer is used to take a scalar

continuous output signal, sample it at a relatively high rate, and then

sort it out (in a particular fashion) into a vector of "pseudo" measure-

ments.

The concept is based on using information contained in a scalar

measurement, sampled at a high rate, to generate a lower rate measure-

ment vector. This vector is likened to pseudo states since it effec-

tively provides distinctively different information in the form of

separate sampling sequences shifted in time. Vector switch decomposi-

tion techniques, which provide a mathematical model of the pseudo

measurement vector, were reviewed and extended in Section II. The

pseudo measurement concept was defined and illustrated with an example.

The example demonstrated potential since;

* Unity steady-state gain without forward loop com-
pensation was achieved.

* A five component mulciple-order sample vector was
generated from a scalar analog signal.

a Three poles were assigned using only one availa-
ble analog measurement and therefore accomplished

pole placement with multiple samples of a single
output varieble (in distinction to single samples
of several output variables).

The illistrative e.ample of Section Il did not address the practi-

cality of the approach, since the magnitude of key parameters, such as

feedback gains (whmn plant dynamics, typical of modern aircraft, are

used), was ignored. This deficiency was remedied in Section V, where a

YF-16 case study example was used to compare pseudo measurement gains
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against conventional YF-16 analog controller gains. The pseudo measure-

ment gains were found to be comparable wLth the conventional gains,

indicating the approach does not require control authority more exces-

sive than the analog controller design.

In Sections III and IV the basic tools needed to assess the pseudo

measurement concept were reviewed and/or enhanced. The concept of the

frequency response of the continuous variables of single-rate digitally

controlled systems was reviewed in Section III and then, in Section,

given sufficient generality to treat multi-rate systems (including the

pseudo measurement concept).

An unanticipated dividend accrued from the analytical development of

Section IV. As a "byproduct," an important relationship was deduced

which made it feasible to apply the switch decomposition/frequency

response technique to the error analysis of simulations of continuous

systems and/or discretely controlled continuous systems. An illustra-

tive example demonstrated the significant spectral differences between a

closed-loop system (employing an analog or digital conttoller) and an

all-digital simulation of the closed-loop system. The example also

treated problems encountered when simulation software is implemented on

two different (independent) computers, each working in a slightly

different frame time.

Thus the tools of Section IV can be profitably applied to the

"letcur" analysis of simulations - perhaps to predict expected differ-

ences between actual flight test and man-in-the-loop moving-base simula-

tions.
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APPENDIX A

FREQUENCY RESPONSE OF FAST-INPUT/SLOW-OUTPUT
CLOSED-LOOP SYSTEM USING MULTI-RATE THEORY

The following solution of the closed-loop system in Fig. A-i is

based on the multi-rate theory presented in Ref. I This same system was

treated in Section IV using vector switch decomposition modeling. The

objective is to calculate the frequency response expression for the

output variable CT/N. The procedure for this example is typical for

closed-loop systems employing fast-input/slow-output sampling.

M2 G,

[R E T2CT
S_ T"/2 - - , T -

6z M

Figure A-1. Fast-Input/Slow-Output Closed-Loop System

CLOSED-LOOP MULTIL-RATE CONFICURATILON

The T/N output equation for Fig. A-I is given by

CT/N = (G1 M2 )T/N ET/ 2  (A-1)

First, solve for the ET/2 signal at the input of the M2 data hold.

ET/ 2  RT/2 - (G2 M)T/ 2 (GIM 2 hT/2) T  (A-2)
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Next, premultiply Eq. A-2 by GIM2 and take the T transform of both sides

of the resulting equation (or sample both sides of the equation at a T

interval). The result is

(QIM2 ET/2)T = GIM2 RT/2)T - [( 1Mm)(G 2 M)T/2] (GiM2ET/2)T (A-3)

Rearranging Eq. A-3,

(GIM2 ET/2)T = I + [(GIM2)(G 2 M)T/2]Tl-I (GIM 2 RT/2] T  (A-4)

and substituting Eq. A-4 into Eq. A-2 produces Eq. A-5.

ET/2 -RT/2 - (G2 M)T/2{I + t(GIM2)(G2M)T/2]T}-I (GIM2RT/2)T (A-5)

Finally, substituting Eq. A-5 into Eq. A-I gives the output equation

CT/N as a function of the input RT/ 2 .

1 2

0 T/N G(GN2 JT/NRT/2 - (GIM 2 )T/N(G 2 M)T/2{I+[(LM2x(G 2 T/2/E]T}-](GlM2 RT/2)T

(A-6)

Term I in Eq. A-6 introduces spectral components at

djn b + 2rn/(T/2) , n = 0, 1, 2, 3, ... (A-7)

and Term 2 Introduces components at

W b + 21rk/T , k = 0, 1, 2, 3, ... (A-8)

Assume f = -In(0.81); this gives a set of convenient numbers when

Eq. A-6 is evaluated. We first evaluate the terms in the inverse ex-

pression
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[(GIM2 )(G 2 MjT/21T  (A-9)

Let z = sT/2, and introduce a phantom T/2 sampler to Eq. A-9.

[LGCIM2)G 2 M)T/21T = [(CGIM2JT/2(G 2 M)T/2]T (A-10)

This mathematical operation is depicted in Fig. A-2.

Rzl M ~

T/2 1 F T/2 T

Phantom
Sampler

Figure A-2. Phantom Samplex Cuncept

This step is conceptually correct since the T output sampler simply

rejects all the unwanted samples from the T/2 sampler. Therefore,

( 1G2M)MTI =2 (A-1l)
- z e-T/2

and

)CMT/2(G2 )T/2]T [I! TI2 (a+ 1)
[[zTz2 G 2M j = e-sT/2

(A-]2)

Equation A-i2 can be solved by calculating the residues of the following

expression (see Section IV):

_ f ( - e-r/2) 2 (p + i)z dp (A-13)

2 pj p(p eT/2 ) 2 (a - p 2 ) P
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The residues for the double poles at p - 0 and p = e-T/2 are.

rs0  =d (p + 1)z 1
p P e-T/2) 2 (z P2 p=O

e-T + 2e-T/2 (

e_ 2 T 
(A-14)

d~ [(p +l)z

reslp=e-T/ 2  d p[ (P'- + )] p -e-T/2

-(e-T + 2e-T/ 2 )z2 + (3e- 2 T + 4e- 3 T/ 2 )z
= -(A-15)

e 2 T(z - e

Combining Eqs. A-14 and A-15 gives the T transform required in Eq. A-12.

i - e-/2)2[resIj=, + rest .._T2 = li- e-TIe 2 [_ +(Z - +-2e-/2]

(A-16)

z sT
z- eT

Substituting Eq. A-16 into the inverse expression in Eq. A-6 and solving

for the inverse results in

I + [(GlM2)(G2M)T/21TI-l z - -T-2

z2 + [-2e-T+(1-e-T/23 2]z + [2e-2T-3e-T+2e-T/2]

(A-17)
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For T =-in(0.81) = 0.210721031 sec, Eq. A-17 becomes

S+ [ýC;IM2)(G2M )T/2]T-I = (z - 0.81)2

z2 - 1.61z + 0.6822

Next, calculate the forcing finction

[(GM2) RT/,]T - [ (C; IM2 ýT/ 2RT/ 2 ]r TA 9

(A-I19)

Equation A-19 can also be solved using the residue method employed on

Eq. A-12. However, a second method (Ref. 1) is to use partial fraction

expansion on the T/2 z-transform product (z = esT/ 2 ) in Eq. A-19; take

the inverse of each term back into the continuous time domain; and then

resample back to the z-domain for a T sampling interval (z = eST). In

practice, the intermediate step of computitug the generating time func-

tion is merely a convenient conceptual step and can be skipped. Then,

for r = I sin bt,

(GjM2)T/2T/]T = (Ii - e-T/2) (z sin bT/2) T

(z e-T/2I [(z - cos bT/2) 2 + (sin bT/2) 2 ]

(A-20)

Expanding in partial fractions, Eq. A-20 becomes

ý(l - e-T/2) (z s' br/2) 1
(Z - e-T/2) [(z - cos T/2)2 + (sin b=/2)2

Klz sin bT/2 K2 z(z - cos bT/2) K3z I T

1[(z -cos bT/2) 2 +(sin bT/2) 2 ] + [(z - cos bT/2) 2 +(sin bT/2) 2 ] + J z

(A-21)
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Solving for K1 , K2 , and K3 in Eq. A-21 gives Eq. A-22 (z = sTi2

S - e-T/ 2 ) (z sin bT/2) rT
U(z - e-T/ 2 1 [(z- cos bT/2) 2 + (sin bT/2)2]

( _ e-T/2)

M[(e-T/2 - cos bT/2) 2 + (sin bT/2) 2 ]

(cos bT/2 - e-T/ 2 )z sin bT/2

Rz- cos bT/2)
2 + (sin bT/2)

2 ]

(sin bT/2)z(z - cos bT/2) + (sin bT/2)z T

[(z - cos bT/2) 2 + (sin bT/2) 2 ] (z - e-T/ 2 )

Since we are concerned with steady-state frequency response, only the

sine and cosine terms need to be considered. Therefore, resampling at a

T frame time results in (z - esT):

I-e-T/2) (z sin bT/2) T Kjz sin bT + K2 z(z - cos br)

z-e-T/2) [(z- cos br/2)2(sin bT/2)2] [(z - cos bT) 2 + (sin bT) 2 ]

(A-23)

whe re

Kco bT/2 - e-T~ -(A-24)(e-T/2 - cos bT/2) 2 + (sin bT/2) 2

and
K2 (1 - e-T/2)(sin bT/2)

(e-T/ 2 - cos bT/2) 2 + (sin bT/2) 2  (A-25)

It is now apparent that the [(GIM2 )RT/2] T term represents a sinusoidal

forcing function for Eq. A-6. In Ref. 1, Appendix E, it is shown that

Eq. A-23 reduces to a complex multiplication factor in the frequency

response expression. That is, the complete frequency response expres-

sion for Eq. A-6 is given by
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1i I (1 1 ,T2 ,/2 ST/ 2 IT
All I [Kc2 ') ý1 + K(G1M2)(G2N, [ +jK 21

I q•t s=jL)k z-I Uk(T/ 2) z-lto 1,.T

(A-26)

where

wr b = b+T-7  , n= 0, 1, 2,

(A-27)

wk b + 2Tk k =0, 1, 2,...

The complex multiplication factor [K1 + jK 2 ] is defined in Eqs. A-24 and

A-25. The remainiig frequency response factors were written directly

from inspection of the CT/N output equation (Eq. A-6) using the fre-

quency response identities presented in Section IV, Subsection D.

Notice that K1 and K2 are functions of tl.e input frequency b and not

k = b + 2ik/T. In addition, both K1 and K2 are periodic functions at

b n/iUIi), thie input sampling frequency. As discussed in Section IV,

the result of this singular dependence on the input excitation frequency

b and the periodic nature of the K1 and K2 functions is multiple Bode

plots.

Substituting the previously calculated terms into Eq. A-26 results

in Eq. A-28:

Sp)_~' Ij~ (I,-S"
j0 -sTjBjj - II T/-e-s'/ 1 ) 1( ie&</2 Z) +11 I

AI+jBa - T/2s(s+1) Ts(s+l) s~jwk (z-e-T/2) Z z=.4wk(T/2)

(z - 0.81)2 z!ýesT

z2 - 1.61z + 0.6822 [K1 +1 K2 ] (A28)

This equation gives exactly the same results as Eqs. 159 or 175 in Sec-

tion IV.
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FWRQNCY RESPONSE TERM [ 0 1T/ 2 JT

It is possible to derive a general frequency response identity

factor for the [(CIM2)RT/2 1 T term in Eq. A-6. Consider the more general

expression in Eq. A-29 with r = I sin bt.l

[GRT/M]T - [GT/MRT/MT (A-29)

The T/M transform for the sinusoidal input is expressed as

RT/M z sin bT/M esT/M
z2 - (cos bT/M)z + 1

Substituting Eq. A-30 into Eq. A-29 and exnpadino the TIM transform

product into partial fractions gives

GT/M z sin bT/M ]T = Kjz sin bT/M + K2 z(z - cos bT/M) T

z2 
- (cos bT/M)z + i z 2 

- (cos bT/M)z + I

+ Terms due to°]T (A-31)

[modes of TT/MJ

Since we are concerned with the steady-state frequency response, the

partial fraction expansion terms due to the modes of GT/M can be

dropped. Therefore, multiply both sides of Eq. A-31 by z 2 +(cos bT/M)z+1

and evaluate at z = cos bT/M + j sin bT/M. The result is
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[GT/M z sin bT/Mý,i, b(T/N)] = (KIz sin bT/M + K2 z(z-cos bT/M) zb(T/M)] T

(A-32)

and

[GT/Mz sin bT/MIlb(T/ )IT  [K1 sin bT/M + K2 j sin bT/MJ T  (A-33)

Then

T zeST/M

G/M(z) Z K + jK2 (A-34)

Substituting Eq. A-34 into Eq. A-26 produces

A(+JMn T/ 21 zi2eT/2 Ii+ [(GJM2)(G2M) T/2]T)

T1 =(02J ? .= wk(r1
2

) z- 14b)4 T

× (GJM2) T!2z s/

1z=! (T12) /A-J ,•

The following general frequency response identity can then be applied to

Eq. A-6 to directly write Eq. A-35.

[GR/M]T [GT/MRT/rGT zeesT/M

z=14b(T/M) (A-36)

A complete set of frequency response identities is listed in Section IV,

Subsection D.
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APPENDIX B

C01NWUTATION OF (W 3*M 2W2 )T AND (W 2 M 3 W3)T

As noted in Section IV, the computation of terms such as (W3,M2W2 )T

and (W2*N3W3 )T is straightforward. 
First, evaluate (W3 *M2,W2 )T using

Eq. 21O:

([T 1I-T/2\ V s/]~t sT/2 /C

(B-1)

1 -sT CsT e -sT(,s1)
S 5

sTI3 -sT s5T/6 Tie5T/6 eST/
Ss e 3e [1 0

-e 
-- -- -

0

es2T/3 esT/6 esT/) e-sT s2T/3

s s (13-2)

Next, evaluate (W2*N3W3 )T:

I '/ TsT 3 '
ý!I//21  (- -sTI3s T

(W2 *M3W 3 ) = T

IT/3 ' e-ST/3 e -s2TI3

e-s (B-3



Clearing through and writing Eq. B-3 in terms of the advanced z-transform

for I/s:

-sT s2T/3 -sT s2T/3 -sT sT/3 -sT sT/3 -sTS e e e- e e e e e

S S S S SS

(W2 *M3 W3)T

sT/2 sT/6 sT/6 -sT s5T/6 sT s5T/6 -sT sT/2
e e e e e e e e eI ___o 0______S S S S S _

=[ (B-34)

0 1 0

Equations B-2 and B-4 justify the assigniaents made in Eq. 211 of Sec-

tion IV.
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APPENDIX C

NUMERICAL DETAILS FOR AN ILLUSTRATIVE EXAMPLE

Equation 223 of Section IV stated

1yj ( T/3) -T/6 2 -T/6 -2T/6 2

(p - (p-e )(p+e pe(zp

z (z2 e-5T/6)

T/ (T/ + es /

(z- e-2T/3)(z - e-T/3)(Z2 + e-T3z + e-2T/3) z esT/3

(c-i)

There are four residues require&:

3 (C-2)
res res e-T 3 - T z

(e-T -T z - 2T3

-1/,2 (cc-3)
2T/res = res e -T -T/ -T/3 /3)-T/3

- (e-T _ T )(3e-T/3 )(z -

res - - (e6/2) + (jQ//2)eT/I

T6+ I-i e-T/ 6_3z

(------- 3- -T/6 e 6 3- e_.h,/3)(_e-I/6+ j i/ _ ) - +_T/6) t -116

2 2 2) )

(C-4)

i

, ~C-i



Switch decomposition can be used as an alternative (refer to Fig. C-I).

CT/3 ~ ~ = 3W3* s +2] 2 (2R

T1 TT /

SW 3 etST/3 I +1 e } [( R(C-5)

s2T/3 ST/2 T

z -T z -e3/21z
z e zz

ze 2 T/3 e-5T/3 - e-2T/3 Z2 13T/1

Le ze j-Tze4T/3 zeT,3j 2. - -2e4T/3 + e5T//6
= 3 -2T W3 -2T., -T,

z- e [zeT/2 kz - e )kz - e C)

1IT3 = W. {1 T/i T

Figure C-i. Switch Decomposition of T/2, T/3 Lxample

Next, define z = esT/3 and clear through by W3 :

6 -3T/2 3

z6(e- 2T/3) + -13T/16 3

cT/3 -- -1 -2] [z6(i-4T/ 3  -e 5 T/ 3
(z 3 _ e-2T )(Z3 e-T (C-7)
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Expand Eq. C-6 and cancel the pole/zero pair z 2 + e + e

6 -2T/3 5 -4T/3 -5T/6 4 -3T/2 3 -13T/16 2T/3 z + e z + (e + e )z + 0- z + e-
S(z - e-2T/2)(Z2 + e-2T/3 + e-4T/3)(z - e-T13)(z2 + e-T/3Z + e -2T/3

(C-8)

2 2 -5T/6.z (z + e.
-2T/3) e-T/3)2 e-T/3 -2T/3 (C-9)

(z- e )(z-e )(z +e z+ C

0-3



APPENDIX D

LISTING OF TRANSFER FUNCTIONS

The s- and w" transfer functions are listed for a T = 0.04 seconds

(25 11z). The actuator model, 20/(s + 20), is included. The w' transfer

functions presume a ZOH and were calculated using the DISCRET computer

program presented in Volume Ii.

Also listed are the advanced w'-transfer functions for a needed for

the analyses of Section V. The denominator, which is the same regardless

of the amount of time advance, is listed only once. The numerators are

listed for advances from 0.0 to 0.9.

For ease of presentation, the variable s has been used in all of the

tables. The particular data heading makes clear whether s or wV is in-

tended.

s- AND w°-PLANE TRANSFER FUNCTIONS

4/i 5e, B-Plane

AK= ( AINK/ADK) =--1 449

ATF(S) NUMERATOR

T .ANMThY(T) A7ERO(I)
1 -1-.h449 is** 3 ( -. 8003E-O2) + J( -. 7455E--oi)
2 ( -187.( )s** 2 ( -. 800o3-oP) + J( .7455F,-O1)
5 ( -2.3I{0 )S** ( -101.9 + J( 0. )
4 ( -.8295 ) ANK= -1.449

ATF(S) DENOMINATOR

I ADIPOLY(T) APOLE(I)
1 ( 1.000 ) 0**5 ( 1.137 ) + J( 0.
2 ( P0.95 )S** 4 ( -. 93451--02) + J( .7705E-O1)
3 ( I(. 71 )S** 3 (-.9345E-O2) + J( -. 770)E-O1)
1 ( -46.p( , 2 ( -P.071 ) + J( 0.
- ( -. 782o **1 ( -P0.00 + J( 0.
C; ( -. 2837 ) ADK= 1.000

D- 1



R K= (RNK/RDK ) -. 2926F--03

RTF(S) NUMERATOR
IRNPOLY(I) RZERO(I)

1 (-.29P26FO--3)s** 5 ( -. 8003E-02) + J( .71,55E-.01)
2 ( .498 6Fr-o ) s** )I ( -. 8003E-02-) + J( -. 71455F,-01)
3 1 .040 )s** 3 ( 50.00 ) + J( 1 707E- 10)

4 (-i40.0 )s** 2p -54.67 ) + J( 0.)
-( 2.2P36 )S** 1 ( 175.1 ) + J( 0.

b (-.7873

RTF(S) DENOMINATIOR
I RD)POLY(1) - -RPOT.E(I)

1 ( 1.000 ).3** ~i( 1.137 )+ J-( 0.
2 -1.9 s h( -. 9345E-02) + J( .775-(05 ')

3 1 i ý'P )S** 3 (-.9345F-02) + J( -. 7705B--01)
4 (-44. p9 )S** P 2.070 )+ J( 0.
5 (-.7430 )s-'* 1 (-19.00 )+ J( 0.
c ( -. 2693

BK-= ( BATK/BDK )=-147.6

BT"( S) NIJMERATOR

I BNPOLY(I) BZLP.O(I)
1 (-147.6 ) S** 3 C0. + J( 0.
2 (-79.39 )s** 2 (--.8816B-02) + j( 0.)
3 ( ~68 S*' 1 (-.5292 )+ J( 0.
4 ( ,BiiK=- -1 y6

3TFý 3) DENOMINATOR

T BDPOLY(i) BPOLE(T)
1 ( 1.000 )S** 5 1.13ý7 )+ J( 0.
2 ( .r.95 )S** 14 (-.9545E-02) + J( .7705B-01)
3 ( l.1 )S** 3 (-.93 145E-02) + J( -. 7705E-01)

14 (-46.66 )S** 2(-2.071 ) 4- J( 0.
5 '-.78?O )S** 1 (-20.00 )+ J( 0.)

6 (-.2837 )13DK=' ,.COO

*1 Ti -2



q5,w'-Plane

i=(silK/SDK )= .-(546ý-02

.ýTF( ") NfaT1ATOR

I SNPLY(I)SOZEB0(I
1 ( .7T(E~2~)** (-.881(,E-02) + J( 0.)

2 ( 2.2 4 )s*) h( -. 5292 ) + J( 0.

5 ( -i8.8 )s** 3 ( 50.00 A- I j( -. I'1 hI)

h (-75 .3h )s** P -371 .2 )+ J( 0.
5 (-.53 )s* (0.+ J ( 0.)

0 .

3IFF( 3) DENOMINATOR

1 SDFOLY(l) sp0Ld:(i)

1 ( .000 )S3 s 1.137 )+ j( 0.
2 19.911 )s** h(-934h5E-02) + j( .7705Eý--01

3 57 )* -. 9345E-02) + j( -. Tyos5E-01)l

h (-44. p9 )s** -2.070 + j( 0.

5 -.74-30 ~* 1 (-19.00 + J( 0.)

An/be, s-p2.ane

CKý= ( CNX'/CDK )=-.5315

CTF(S) LN1JMRATOB

ICNF{)LY(I) CZERO(I)
-. s~5 )s**h 4 o. + J( 0.

2 ( -~3i~- >S* 3 ( .1831E--02) + V( 0.)

3 (-P4 9 )s** 2 (-..00 ) + j( -6.833
14 ( .45G7L-01)s** 1 (-.5009 ) + j( 6.833 )

0 ( . CNK,ý -. 5315

CT ( S) DENOMTNATOR

1 CDPDLY(I) CPOLE(1)

1 ( 1.000) )S**s 1.157 + +J( 0.

3, ( 16.7 )S** 4 -.93~45Fr-02) + T( . .7705E-01)

S C-46. 66 )S** 2 (-P.071 )+ j( 0.)

-) (-.78p0 )s** I P20. C) + ±j( 0.)

6 (-.2857- ) CDK= 1.000
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An/!e, w'- Pl&ne

TK= ( TNK/TDK ) i .O0O3E-Oi

TTF(S) NUMERATOR

I TNPOLY(T) TZERO(I)
I .1003E-O1)S** 5 .1850E-02) + J( 0.
2 -. 4902 )S** 4 -. 5721 ) + j( 6.847
3 -( .994hE-Ol)S** 3 -. 5721 ) + J( -6.847
4 -23.68 )S** 2 50,00 ) + J( -. 2797E-11)
5 .4333Eý-O1)S** 1 0. ) + J( O. )
6 o. )

TTF(S) DENOMINATOR

I TDPOLY(I) TPOLE(I)
1 1.000 )SX* 5 1.137 + J( e.
2 19-95 )S** h -. 9345E-02) + J( .7705E-01)
3 ( 15.74 )S** 3 -. 9345E-02P) + T( -. 7705E-01)
4 ( -4h.,-9 p S* 2 -P,070 ) + J( 0.

5 ( -. 7'o4 )s** 1 -19.00 ) + J( 0. )
6 ( -. 2693 )

T•I• ADVANIC= T.NS FAMCTIONS ("')

DENOMINATOR

I DPThY(I) POLE(I)
1 ( 1.000 )s** 5 ( .137 ) + J( o. )
2 ( 19.95 )s** 4 --. 9345E--02) + J( .7705E-01)
3 ( 15.74 )S** .5 --.9345E-02) + J( --. 770ý) '-u)
4 ( -44.29 )S** 2 -2.070 ) + J( 0.
5 ( -. 7430 )s** 1 -19.00 ) + J( 0.
6 (-.2693

A = 0 (0.00 seconds)

NUMERATOR

I NPOLY(I) ZERO(I)
1 ( --.2926F,-03)S** 5 ( -- 8003E-0?) + J( .7455F01)
2 ( .49861-O1)s** 4 ( -. 8003E-"2) + J( -. 7455E-01)
3 ( 1.04O )S** 3 ( 50.00 ) + J( .1707E-I0)
4 ( -I40.o )S** 2 ( -54.67 ) + J( O.
5 ( -2.236 )S** i ( 175.1 ) + J( 0. )
6 ( -. 7873 )

D-4
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A =.1 (.OOh seconds)

NUMERATOR

I NPOLY(I) ZERO(I)
1 ( --. 1474E-<)3)S** 5 ( -. 8003E-02) + J( .7455E-01)
2 ( .5291Fr-O1)s** 4 ( -. 8003E--02) + J( -. 7,55Fr-01)
3 ( .4797 )S** 3 ( 50.48 ) + J( 0. )
4 ( -14o.o )s** 2 ( -52.18 ) + j( o.
5 ( -2.239 )s** I ( 36o.7 ) + J( 0.

6 ( -. 7873 )

L .2 (.008 seconds)

DTUMERATOR

I NI)LY(I) ZERO(I)
1 ( .8525E-O7)S** 5 (-.8003E-o2) + J( -. 7455E-oi)
2 _ .9372F-01)S'k* 4 (--.8OO35-O2) + J( .7455E-O0)
3 ( -. 8o56Eol)s** 3 ( 51.82 ) + J( 0. )
4 ( -i4o.1 )S** 2 ( --5o.31 ) + J( 0. )
5 ( -2. 2 )s** 1 (-.6301E+06) + J( 0. )
6 ( -. 7873 )

A = .3 (.012 seconds)

NUMERATOR

1 NPOLY(l) ZERO(I)
1 ( .14o6E--O) S** 5 ( -. 8003E--02) + J( .7455E--01)
2 ( .5228F-O1)S** 4 ( -. 8003F-02) + J( -. 7455E-01)
3 (-.6408 )s** 3 ( -48.93 ) + J( 0. )•.• • .. . •1 n, )+ j( O-

5 ( -2.245 )S* ( -376.9 ) + J( 0. )( -. 83

A = .4 (.016 seconds)

I PQLY(l) ZERO(I)
1 ( .2656Eh-o3)sm* 5 ( -. 8003E--02) + J( .7455E-0i)
2 ( .4859Eo-1 )s** 4 ( -. 800F,-O-2) + j( -. 7455E-01)
3 ( -1.201 )S** 3 ( -47.95 ) + J( 0. )
4 ( -14o.i )s** 2 ( 57.22 ) + J( 0. )
5 ( -2.249 )S** I ( -192.2 ) + J( 0. )
6 (-.7873

D-5
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A 5(.02 seconds)

NUMERATOR

I NPOLY(I) ZERO(I)

1 .3672E-03)S** 5 ( -. 8003E-O2) + J( .455BE-O1)

2 .42661E-o1)S** 4 ( -. 8003F,-02) + J( -. 71455E-01)
3 -1.761 )S** 3 ( -47.34 ) + J( a. )
4 -1(4-io.i )s** p 61.72 )+ J( .
5 --2.252 Nis* i -130.5 ) + J( O, )
6 -. 7873 )

A .6 (.0214 seconds)

NUMERATOR

I NPOLY(T) Z1ERO(I
1 .4383F 1-03)s** 5 ( -. 8003F1--02) + J( .7455j--o1 )
2 .3448l-01)s** 4 ( -. 8003EF-02) + J( -. 77455B--0o)
3 -2.322 )S** 3 ( -147.10 ) + T( O. )
It -140oi ),** 68.09 ) + J( o. )
5 -2.2>5 )s** 1 -99.64 ) + J( O. )
6 -. 7873 )

A = .7 (.028 seconds)

NUIMERATOR

1 NFPOLY(I) ZERO(I)
I ( .4t722E-03) S** 5 (-.8003F,-02) + J( .7455Fr-O)

2 • .& Uf~l rui )O"-t-• I -. •AJJlU--'V } "• -. i--./z, v,

3 ( -2.882 )s** 3 ( -47.23 ) + J( o.
4 ( -i1o.1 )S** 2 ( 77.41 ) + J( 0. )
5 ( -2.258 )S** 1 ( --81.13 ) + J( 0. )
6 ( -. 7873

A .8 (.032 seconds)

NUMERA'.TAOR

1 NPOLY(I) ZERO(I)
1 ( .4629E-O3)S** 5 ( -. 8003E--02) + J( .7455Er-O1)
2 ( .11411-O1)S** 4 (-.8003E--02) + J( -. 74.55F-O1)
3 ( -3.442 )S** 3 ( -47.79 ) + J( 0. )
i ( -Io0.1 )S** P ( -68.83 ) + J( 0. )
5 ( -2.261 )s**I ( 91.98 ) + J( O. )
6 ( -. 7873
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A .9 (.036 seconds)

N1JMERATOR

I NPOLY(T) ZERO(I)
1 ( .) 037E-0)s** 5 -. 8003F--02) + j( *7 4 !5E-0)
2 ( --. 31H-02)S** 4 (-.8003F,-02) + J( -. 7455i-0i)
3 ( -4.003 )s** 3 ( -4.87 ) + j( o.4 ( -10o.1 )s** 2 ( -6o.19 ) + j( 0. )
5 ( -p.2(Li )s** 1 ( 117.7 + J( o.
6 ( -. 7873 )
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